1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 基于PCI接口的高速數字信號處理板卡的設計

        時間:2024-09-24 01:05:22 理工畢業論文 我要投稿
        • 相關推薦

        基于PCI接口的高速數字信號處理板卡的設計

        摘要:介紹了PCI接口的基本功能和特點;利用PLX9054接口芯片,結合雙口RAM和EPLD邏輯電路,實現了TMS320C6701與PCI總線間的雙向高速實時數據交換;分析了DSP與SBSRAM接口信號的完整性,對PCB設計作了仿真分析。

        隨著數字信號處理器(DSP)及其外圍支持芯片性能的提高,軟件無線電已經得到廣泛應用,大大增強了實時信號處理系統的整體性能。但另一方面,隨著ADC和DAC向射頻方向前移,信號的采樣頻率也相應地提高,使得DSP系統數據交換的帶寬成倍增長。傳統數據交換接口的瓶頸效應日趨明顯,因而相應地誕生了一批新的接口標準。PCI接口從1993年提出至今,得到了眾多計算機設備廠商的支持,已經在PC機、工業控制等相關領域得到了廣泛的應用。

        圖1 數字信號處理板卡的原理框圖

        無源雷達是利用非合作的外輻射源發出的信號作為探測信號(如廣播信號、電視信號、GSM手機基站信號等),從接收目標反射的回波信號中提取目標的方位、速度等參數的設備。與傳統的雷達相比,它是被動接收的,因此隱蔽性強。在隱身飛機出現后,無源雷達技術得到了廣泛的關注。由于隱身飛機引入特殊的微波吸收材料,并采用了特別的外形設計,因而傳統的單基地毫米波雷達很難發現它。而無源雷達采用的探測信號是廣播電視號,由于廣播電視信號波長在米波范圍內,從而使針對毫米波波長設計的微波吸收材料失去作用;另外,在收發站的配置上,由于無源雷達設計為雙站或多站系統工作,因此也破壞了隱身飛機對收發同方向消隱發射電磁波信號的設計思路;因而無源雷達正成為對抗隱身飛機的有力武器。本文針對無源定位雷達信號處理機的應用,利用PCI接口實現了將DSP處理結果快速實時地傳輸給PC機,由PC機完成數據融合與顯示記錄等功能。

        1 基于PCI接口的高速信號處理板卡的設計

        圖1是該板卡的原理框圖。無源雷達接收機輸出的中頻(30MHz)窄帶(帶寬為30MHz)窄帶(帶寬為200kHz)正交信號經過緩沖、濾波后送入A/D變換器AD9051進行高速模數轉換。由于采用直接中頻帶通采樣,不但降低了接收機的復雜度,而且減小了接收機的輸出噪聲電平,有利于提高接收機的靈敏度和動態范圍。采用30MHz的采樣頻率,數據流首先進入FIFO存儲器IDT72V255中緩存。當FIFO充滿時,EPLD(EMP7128)給TMS3206701 DSP一個外中斷信號,啟動DSP的DMA傳輸,將FIFO中的數據快速地傳輸到DSP片外的同步突發靜態存儲器(samsung K7A163601M)中。DMA傳輸結束后,DSP對采樣的數據作時-空二維相關處理[1],處理的結果首先寫入雙口RAM(IDT70V25)中。PCI總線與雙口RAM的數據交換,采用了郵箱寄存器(Mail Box)的方式進行。具體實現如下:先在雙口RAM中的某一固定的地址定義一個存儲單元作為雙方通信的“郵箱”,該存儲單元被答作郵箱寄存器。數據通信的發起方先檢查郵箱寄存器是否為空,如果郵箱寄存器是空的,則將數據寫入雙口RAM中;否則就等待郵箱寄存器為空。數據的接收方不斷地查詢郵箱寄存器,如果發現郵箱寄存器的值為非空,則將雙口RAM中的數據讀入,同時將郵相寄存器置為空值。利用這種方法的優點是無需外加數據通信握手信號和邏輯,就可以直接完成雙向數據流的交換,對通信重復間隔長、數據塊大的傳輸十分適用。

        圖2 EPLD時序控制的仿真結果

        2 PCI接口設計

        1991年下半年,Intel公司首先提出了PCI總線的概念,并聯合IBM、Compaq、AST、HP、DEC等100多家公司,于1993年推出了PC局部總線標準——PCI總線。PCI是一套整體的系統解決方案,較其它只為加速圖形或視頻操作的局部總線優越。PCI局部總線采用32位或64位數據總線,以33MHz或66MHz的時鐘頻率操作,可支持多組外圍部件及附加卡。在33MHz情況下,其數據傳送率高達132MB/s;在66MHz情況下,其數據傳送率翻倍。另外,它支持線性突發的數據傳輸模式,可確?偩不斷滿載數據。外圍設備一般會由內存某個地址順序接收數據,這意味著可以由一個地址起讀寫大量數據,然后每次只需將地址自動加1,便可接收數據流下一個字節的數據。線性突發傳輸能夠更有效地利用總線的帶寬傳送數據,以減少無謂的地址操作。在雷達信號處理中,對信號的實時性要求很高,這就要求信號傳輸的帶寬要足夠高,PCI接口非常適合將高速信號處理模塊和計算機橋接在一起。目前PCI接口的設計一般采用兩種方法:其一是采用通用接口芯片完成。常用的芯片有:AMCC公司的S5933,PLX公司的PLX9054等。其二是采用EPLD或FPGA實現。這種方法可以針對自身的需要定制一定的功能,因而設計靈活性大,但必須嚴格遵循PCI總線的規范。采用通用接口芯片完成的好處是設計時可以不用關心PCI總線操作,只要處理好本地總線接口即可。設計簡單省時。本文采用PLX9054的C模式完成PCI接口功能。PLX9054有著獨立的本地總線(Local Bus),由它負責對雙口RAM進行訪問控制。

        圖3 沒有端接電阻時的仿真波形

        3 EPLD控制時序的實現

        EPLD選用Altera公司的EMP7128S,用它來完成ADC采樣控制、FIFO的讀寫控制、采樣結束中斷的產生等功能。采用Altera提供的MAXPLUS II集成開發環境軟件,它支持VHDL、Verilog HDL和AHDL語言,此外它還支持直接輸入原理圖的方式。本文采用AHDL語言編寫。圖2是仿真的時序圖,其中CLK是輸入的外時鐘信號,WR是FIFO的寫信號,ENCODE是ADC的采樣時鐘信號,TR是采樣觸發信號,INT是輸出的中斷信號。COUNT是數據采樣長度計數器,雖然FIFO可以提供全滿、半滿的標志位,但僅以此作為中斷的產生條件,就限制了采樣長度的靈活性。為在應用中自定義采樣長度,實現對任意大小的數據(最大不超過FIFO的存儲深度)進行采樣,設計中引入了采樣長度計數器。只要恰當設置COUNT的計數初值(大小為采樣長度的補碼),使計數器溢出時給出INT中斷信號,就可以實現此項功能。ADC采用的是AD9051,它采用5級流水線(Pipeline)結構輸出數據,所剛啟動采樣時,由于流水線未被充滿,前面輸出的5個數據是無效的,自第6個數據起才開始將A/D變換的結果存入FIFO中。

        圖4 采用正確串行電阻端接時的仿真波形

        4 SBSRAM接口設計

        【基于PCI接口的高速數字信號處理板卡的設計】相關文章:

        高速PCI總線接口模塊設計03-08

        高速PCI總線接口卡的開發03-18

        分層結構高速數字信號處理系統的設計與應用03-18

        基于PCI總線的CAN卡的設計與實現03-18

        簡易通用型PCI接口的VHDL-CPLD設計03-18

        基于USB接口的數據采集系統設計03-18

        基于單片機的MicroDrive接口設計03-20

        TM1300 PCI-XIO口的UART和USB接口設計03-19

        基于PCI圖像卡的圖像實時處理系統開發03-07

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>