1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 圖像的小波降噪

        時(shí)間:2023-03-07 08:18:32 數(shù)學(xué)畢業(yè)論文 我要投稿
        • 相關(guān)推薦

        圖像的小波降噪

        圖像的小波降噪
         

        摘要:圖像降噪1直是圖像處理領(lǐng)域1個(gè)研究得比較多的課題,也是1個(gè)熱點(diǎn)領(lǐng)域。其中小波變換降噪技術(shù)是被研究的最多1種技術(shù),本文主要討論近幾年興起的值降噪技術(shù)。2維小波分析用于圖像降噪的步驟如下。
           (1)2維圖像信號(hào)的小波分解。在這1步,應(yīng)當(dāng)選擇合適的小波和恰當(dāng)?shù)姆纸鈱哟危ㄓ洖镹),然后對(duì)待分析的2維圖像信號(hào)進(jìn)行N層分解計(jì)算。
        (2)對(duì)分解后的高頻系數(shù)進(jìn)行值量化。對(duì)于分解的每1層,選擇1個(gè)恰當(dāng)?shù)?a target="_blank" title="閾">閾值,并對(duì)該層高頻系數(shù)進(jìn)行軟值量化處理。
        (3)2維圖像信號(hào)的小波重構(gòu)。同樣的,根據(jù)小波分解后的第N層的近似(低頻系數(shù))和經(jīng)過值量化處理后的各層細(xì)節(jié)(高頻系數(shù)),來計(jì)算2維信號(hào)的小波重構(gòu)。
        還介紹了小波的數(shù)學(xué)基礎(chǔ)。如:小波變換,小波離散及框架,多分辨率分析和Mallat算法的信號(hào)分解和重建過程。
        圖像信號(hào)的小波降噪步驟和1維信號(hào)的降噪步驟完全相同,所不同的是,處理工具是用2維小波分析工具代替了1維小波分析工具。利用MATLAB 7 ,通過具體的例子來說明如何利用小波分析進(jìn)行圖像降噪這個(gè)問題。
           關(guān)鍵字:圖像降噪;小波分解;值量化;小波重構(gòu)


        Denoising Image by Using Wavelet
         

        Abstract:Image noise reduction has been an area of image processing more research topics, as well as a hot field. Wavelet transform noise suppression technology is a study of the most technical, In this paper, we mainly discusses the noise suppression technology of noise threshold which is a method rising in recent years. Wavelet analysis for the two-dimensional image noise reduction steps are as follows.
        (1) The wavelet decomposition of two-dimensional image. In this step, we should choose a suitable and appropriate wavelet decomposition levels (recorded as N), then decompose the 2-D analyzed image signal into N layer decomposition.
        (2) Threshold Quantified about the high-frequency coefficients decomposed. For each level of decomposition, we choice an appropriate threshold, and decide the quantity of the soft threshold for high-frequency coefficients of this layer.
        (3) The reconstruction of two-dimensional image signal by using wavelet. Similarly, according to the approximation of the Nth level (coefficient of low frequency) decomposed by using wavelet and the various details (coefficient of high-frequency) after quantified for the threshold values, calculate the wavelet reconstruction for the two-dimensional signal.
        The mathematical base of wavelet also is introduced, such as: wavelet’s transformation, discrete wavelet and framework, multi-resolution analysis, Mallat algorithm for the process of decomposition and reconstruction of a signal.
        The steps of noise reduction by using wavelet for image signal are identical to the steps of one-dimensional signal noise reduction. The only difference is the process tools. It is using two-dimensional wavelet analysis tools instead of one-dimensional wavelet analysis tools. By using MATLAB 7, through specific examples illustrate how to use wavelet analysis to denoise for an image.
        Keywords: image noise reduction ( denoise of a image); decomposition applying wavelet; quantization of a threshold、reconstruction by using wavelet

        【圖像的小波降噪】相關(guān)文章:

        醫(yī)學(xué)圖像領(lǐng)域中數(shù)字圖像處理的應(yīng)用論文04-19

        談地理圖像投影導(dǎo)學(xué)法08-21

        數(shù)學(xué)小論文11-08

        小課題開題報(bào)告11-04

        數(shù)學(xué)小課題開題報(bào)告02-16

        英語小論文寫作格式02-23

        簡(jiǎn)單的數(shù)學(xué)建模小論文09-02

        歷史小論文怎么寫?10-11

        歷史小論文(精選23篇)07-18

        學(xué)生自創(chuàng)小樂器的制作04-28

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>