- 相關推薦
積和式及其計算
摘要
為了更好地用矩陣來描述組合問題,我們引入1個矩陣置換相抵下的不變量——積和式。積和式的概念在1812年由Binet和Cauchy提出的。積和式是矩陣的1個重要參數,有深刻的組合意義,在組合理論中經常將積和式與其他參數建立聯系,它類似于矩陣的行列式,但又有很大的區別。
本文給出了積和式的定義如下:設 是 × 矩陣( ),則稱和式 為 的積和式(permanent),這里 表示{ }中所有 元排列的集合。
本文中詳細闡述了積和式、 矩陣積和式的1些性質。在積和式的計算方面,闡述了利用Ryser定理計算積和式 的傳統方法;利用正行列式得到兩類 矩陣積和式,并給出其兩種類型的組合應用,其后,利用正行列式建立了計算積和式 的另1種計算理論;最后還給出了關于雙隨機矩陣的兩個問題的計算證明。
關鍵詞:積和式;Ryser定理; 矩陣;雙隨機矩陣;應用
Abstract
In order to describe the question of combination with matrix better, We introduce a constant in replacement and balance out of matrix—— Permanent. The concept of permanent set up by Binet and Cauchy in 1812. It is an important parameter of matrix with profound significance of combination. It often connects permanent with other parameters in theory of combination. It is similar to the determinant of matrix, but there are very great differences.
Define the permanent as follows: It is supposed that is × matrix( ),so claim the permanent as the permanent of , Here is all —Permutation of{ }.
The text described some properties of permanent、 matrix permanent 。At calculation for permanent, it described the tradition method of utilization Ryser theorem to calculate permanent ,Utilize the positive determinant to receive two kinds of matrix permanent, Provide its two types association application; Thereafter, it set up another kind of calculation theory of Calculation permanent that still utilize the positive determinant; finally, provide the identifications of two questions about bistochastic matrix.
Keywords:Permanent; -matrix;Ryser theorem;bistochastic matrix; Application.
說明:論文中有些數學符號是編輯器編輯而成,網頁上無法顯示或者顯示格式錯誤,給您帶來不便請諒解。
【積和式及其計算】相關文章:
淺談計算機病毒及其檢測與預防03-05
計算機網絡管理及其發展03-26
試論計算機虛擬化技術及其應用11-30
安全等級特征量及其計算方法03-19
計算機網絡管理技術及其應用03-07
淺探計算機病毒的檢測及其防范01-09