1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 用多種群遺傳算法求解車輛路徑問題

        時間:2020-08-28 13:46:22 數(shù)學(xué)畢業(yè)論文 我要投稿

        用多種群遺傳算法求解車輛路徑問題

        摘要

        車輛路徑問題(Vehicle Routing Problems,VRP),即如何利用有限的運(yùn)輸資源來完成1定量的運(yùn)輸任務(wù),并且使得運(yùn)輸成本最低的問題。車輛路徑問題由于其巨大的經(jīng)濟(jì)效益,在過去的40多年間得到了突飛猛進(jìn)的發(fā)展。本文在已有方法研究的基礎(chǔ)上,針對標(biāo)準(zhǔn)遺傳算法在解決車輛路徑問題上容易出現(xiàn)早熟,容易陷入局部最優(yōu)解的缺點(diǎn),對傳統(tǒng)的遺傳算法進(jìn)行改進(jìn),提出了多種群遺傳算法(Multiple_population Genetic Algorithms)。即在求解過程中將初始化兩個種群,分別選取不同的交叉變異概率,在每1次迭代完后將第1個種群之中的`適應(yīng)度較低的個體與第2個種群中適應(yīng)度較高的個體進(jìn)行交換,并且保存每個種群的最優(yōu)解到精英種群,以解決傳統(tǒng)遺傳算法容易出現(xiàn)早熟,容易陷入局部最優(yōu)解的問題。實(shí)驗(yàn)結(jié)果表明,經(jīng)過改進(jìn)的遺傳算法比1般算法收斂速度更快,求解質(zhì)量更為優(yōu)良。

        關(guān)鍵字:遺傳算法;物流調(diào)度;多種群;遺傳算子

        Multi- Populations Genetic Algorithms for Vehicle Routing Problems

        Abstract

        Vehicle Routing Problems, how namely use the limited transportation resources to complete the ration the transportation duty, and causes the transportation cost lowest question. Vehicle Routing Problems as a result of its huge economic efficiency, obtained the development during more than 40 years in the past which progresses by leaps and bounds. This article in by has in the foundation which the method studies, is easy in view of the standard genetic algorithms in the solution Vehicle Routing Problems to appear precociously, is easy to fall into the partial optimal solution shortcoming, makes the improvement to the traditional genetic algorithms, proposed the multi- populations genetic algorithms. In the solution process the initialization two populations, separately will select the different overlapping variation probability, after each time will iterate the sufficiency high individual carries on the first populations in sufficiency low individual with the second population in the exchange, and will preserve each center group the optimal solution to the outstanding person population, by will solve the tradition genetic algorithms to be easy to appear precociously, will be easy to fall into the partial optimal solution question. The experimental result indicated that, after improvement genetic algorithms compared to general algorithm convergence rate quicker, the solution quality is finer.

        Key word: Genetic Algorithms, Vehicle Routing Problems, Good Population and Bad Population, Elite Population

        用多種群遺傳算法求解車輛路徑問題

        【用多種群遺傳算法求解車輛路徑問題】相關(guān)文章:

        1.用Excel求解網(wǎng)絡(luò)規(guī)劃問題

        2.學(xué)業(yè)心理問題多

        3.軟件工程多模式融合教學(xué)路徑分析

        4.淺談求解物理計(jì)算題時用拆招

        5.企業(yè)循環(huán)經(jīng)濟(jì)的發(fā)展路徑問題論文

        6.考研數(shù)學(xué)抽象線性方程組求解問題

        7.改善地理學(xué)算法求解柔性作業(yè)調(diào)度問題論文

        8.用英語面試問題

        9.多對一面試常見問題

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>