1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中數學說課稿

        時間:2021-08-02 13:15:05 高中說課稿 我要投稿

        有關高中數學說課稿模板集合八篇

          作為一名辛苦耕耘的教育工作者,可能需要進行說課稿編寫工作,通過說課稿可以很好地改正講課缺點?靵韰⒖颊f課稿是怎么寫的吧!以下是小編精心整理的高中數學說課稿8篇,希望對大家有所幫助。

        有關高中數學說課稿模板集合八篇

        高中數學說課稿 篇1

          尊敬的各位專家、評委:

          大家好!

          我是盧龍縣木井中學數學教師xx,我今天說課的題目是:人教A版普通高中課程標準實驗教科書 數學必修5第一章第一節的第一課時《正弦定理》,依據新課程標準對教材的要求,結合我對教材的理解,我將從以下幾個方面說明我的設計和構思。

          一、教材分析

          “解三角形”既是高中數學的基本內容,又有較強的應用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內容從知識體系上看,應屬于三角函數這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內容是用代數方法解決幾何問題的典型內容之一。而本課“正弦定理”,作為單元的起始課,是在學生已有的三角函數及向量知識的基礎上,通過對三角形邊角關系作量化探究,發現并掌握正弦定理(重要的解三角形工具),通過這一部分內容的學習,讓學生從“實際問題”抽象成“數學問題”的建模過程中,體驗 “觀察——猜想——證明——應用”這一思維方法,養成大膽猜想、善于思考的品質和勇于求真的精神。同時在解決問題的過程中,感受數學的力量,進一步培養學生對數學的學習興趣和“用數學”的意識。

          二、學情分析

          我所任教的學校是我縣一所農村普通中學,大多數學生基礎薄弱,對“一些重要的數學思想和數學方法”的應用意識和技能還不高。但是,大多數學生對數學的興趣較高,比較喜歡數學,尤其是象本節課這樣與實際生活聯系比較緊密的內容,相信學生能夠積極配合,有比較不錯的表現。

          三、教學目標

          1、知識和技能:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。

          過程與方法:學生參與解題方案的探索,嘗試應用觀察——猜想——證明——應用”等思想方法,尋求最佳解決方案,從而引發學生對現實世界的一些數學模型進行思考。

          情感、態度、價值觀:培養學生合情合理探索數學規律的數學思想方法,通過平面幾何、三角形函數、正弦定理、向量的數量積等知識間的聯系來體現事物之間的普遍聯系與辯證統一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數學學習興趣和主動性,鍛煉探究精神。樹立“數學與我有關,數學是有用的,我要用數學,我能用數學”的理念。

          2、教學重點、難點

          教學重點:正弦定理的發現與證明;正弦定理的簡單應用。

          教學難點:正弦定理證明及應用。

          四、教學方法與手段

          為了更好的達成上面的教學目標,促進學習方式的轉變,本節課我準備采用“問題教學法”,即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發興趣、突出重點,突破難點,提高課堂效率,并引導學生采取自主探究與相互合作相結合的學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結構。

          五、教學過程

          為了很好地完成我所確定的教學目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學生、貼近時代的原則,我設計了這樣的教學過程:

          (一)創設情景,揭示課題

          問題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠呢?

          1671年兩個法國天文學家首次測出了地月之間的距離大約為 385400km,你知道他們當時是怎樣測出這個距離的嗎?

          問題2:在現在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實并不難,只要你學好本章內容即可掌握其原理。(板書課題《解三角形》)

          [設計說明]引用教材本章引言,制造知識與問題的沖突,激發學生學習本章知識的興趣。

          (二)特殊入手,發現規律

          問題3:在初中,我們已經學習了《銳角三角函數和解直角三角形》這一章,老師想試試你的實力,請你根據初中知識,解決這樣一個問題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?

          引導啟發學生發現特殊情形下的正弦定理

          (三)類比歸納,嚴格證明

          問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現在如果我為難為難你,讓你也當一回老師,如果有個學生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個結論還成立嗎?

          [設計說明]此時放手讓學生自己完成,如果感覺自己解決有困難,學生也可以前后桌或同桌結組研究,鼓勵學生用不同的方法證明這個結論,在巡視的過程中讓不同方法的學生上黑板展示,如果沒有用向量的學生,教師引導提示學生能否用向量完成證明。

          問題5:好根據剛才我們的研究,說明這一結論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個結論仍然成立?我們光說成立不行,必須有能力進行嚴格的理論證明,你有這個能力嗎?下面我希望你能用實力告訴我,開始。(啟發引導學生用多種方法加以研究證明,尤其是向量法,在下節余弦定理的證明中還要用,因此務必啟發學生用向量法完成證明。)

          [設計說明] 放手給學生實踐的機會和時間,使學生真正的參與到問題解決的過程中去,讓學生在學數學的實踐中去感悟和提高數學的思維方法和思維習慣。同時,考慮到有部分同學基礎較差,考個人或小組可能無法完成探究任務,教師在學生動手的同時,通過巡查,讓提前證明出結論的同學上黑板完成,這樣做一方面肯定了先完成的同學的先進性,鍛煉了上黑板同學的解題過程的書寫規范性,同時,也讓從無從下手的同學有個參考,不至于閑呆著浪費時間。

          問題6:由此,你能否得到一個更一般的結論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節課研究的主要內容,大名鼎鼎的正弦定理(此時板書課題并用紅色粉筆標示出正弦定理內容)

          教師講解:告訴大家,其實這個大名鼎鼎的正弦定理是由伊朗著名的天文學家阿布爾─威發﹝940-998﹞首先發現與證明的。中亞細亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個證明。也有說正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統整理前人成就的基礎上得出的。不管怎樣,我們說在1000年以前,人們就發現了這個充滿著數學美的結論,不能不說也是人類數學史上的一個奇跡。老師希望21世紀的你能在今后的學習中也研究出一個被后人景仰的某某定理來,到那時我也就成了數學家的老師了。當然,老師的希望能否變成現實,就要看大家的了。

          [設計說明] 通過本段內容的講解,滲透一些數學史的內容,對學生不僅有數學美得熏陶,更能激發學生學習科學文化知識的熱情。

          (四)強化理解,簡單應用

          下面請大家看我們的教材2-3頁到例題1上邊,并自學解三角形定義。

          [設計說明] 讓學生看看書,放慢節奏,有利于學生消化和吸收剛才的內容,同時教師可以利用這段時間對個別學困生進行輔導,以減少掉隊的同學數量,同時培養學生養成自覺看書的好習慣。

          我們學習了正弦定理之后,你覺得它有什么應用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個簡單的問題:

          問題7:(教材例題1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。

          (本題簡單,找兩位同學上黑板完成,其他同學在底下練習本上完成,同學可以小聲音討論,完成后教師根據學生實踐中發現的問題給予必要的講評)

          [設計說明] 充分給學生自己動手的時間和機會,由于本題是唯一解,為將來學生感悟什么情況下三角形有唯一解創造條件。

          強化練習

          讓全體同學限時完成教材4頁練習第一題,找兩位同學上黑板。

          問題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。

          [設計說明]例題2較難,目的是使學生明確,利用正弦定理有兩種可能,同時,引導學生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學有余力的同學鼓勵他們自學探究與發現教材8頁得內容:《解三角形的進一步討論》

          (五)小結歸納,深化拓展

          1、正弦定理

          2、正弦定理的證明方法

          3、正弦定理的應用

          4、涉及的數學思想和方法。

          [設計說明] 師生共同總結本節課的收獲的同時,引導學生學會自己總結,讓學生進一步回顧和體會知識的形成、發展、完善的過程。

          (六)布置作業,鞏固提高

          1、教材10頁習題1.1A組第1題。

          2、學有余力的同學探究10頁B組第1題,體會正弦定理的其他證明方法。

          證明:設三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC

          [設計說明] 對不同水平的學生設計不同梯度的作業,尊重學生的個性差異,有利于因材施教的教學原則的貫徹。

        高中數學說課稿 篇2

          說課目標

          (1)知識目標:掌握拋物線的定義,掌握拋物線的四種標準方程形式,及其對應的焦點、準線。

          (2)能力目標:通過對拋物線概念和標準方程的學習,培養學生分析和概括的能力,提高建立坐標系的能力,由圓錐曲線的統一定義,形成學生對事物運動變化、對立、統一的辨證唯物主義觀點。

          (3)德育目標:通過拋物線概念和標準方程的學習,培養學生勇于探索、嚴密細致的科學態度,通過提問、討論、思考等教學活動,調動學生積極參與教學,培養良好的學習習慣。

          教學重點:(1)拋物線的定義及焦點、準線;

          (2)利用坐標法求出拋物線的四種標準方程;

          (3)會根據拋物線的焦點坐標,準線方程求拋物線的標準方程。

          教學難點:(1)拋物線的四種圖形及標準方程的區分;

          (2)拋物線定義及焦點、準線等知識的靈活運用。

          說課方法:啟發引導法(通過橢圓與雙曲線第二定義引出拋物線)。

          依據建構主義教學原理,通過類比、歸納把新知識化歸到原有的認知結構中去(二次函數與拋物線方程的對比,移圖與建立適當建立坐標系的方法的歸納)。

          利用多媒體教學

          說課過程:

          一、課題引入

          利用學生已有知識提問學生:1、橢圓的第二種定義:到定點與到定直線的距離的比是小于1的常數的點的軌跡是橢圓。(用課件演示)

          2、雙曲線的第二種定義:到定點與到定直線的距離的比是大于1的常數的點的軌跡是雙曲線。(用課件演示)

          由此引出:到定點的距離和到定直線的距離的比是等于1的常數的點的軌跡

          是什么?

          (以問題為出發點,創設情景,提高學生求知欲)

          教師用直尺、三角板和細繩演示,學生觀察所得曲線。

          從而引出本節課的學習內容。

          二、講授新課

          1.對拋物線的初步認識

          物理中拋物線的運動軌跡;數學中二次函數的圖象;生活中拋物線的實例(圖片顯示)等。

          2.拋物線的定義

          3.拋物線標準方程的推導:①學生回顧求曲線方程的步驟(建系、設點、列方程);

         、谌艚裹cF和準線的距離為()這樣建立坐標系?由學生思考:可能出現的結果:

          四、課堂小結

          1、本節課的內容:拋物線的定義,焦點、準線的意義及四種標準方程;

          2、理解參數的幾何意義(焦準距)

          3、利用坐標法求曲線方程是坐標系的適當選取。

          課后作業:119頁習題8.52,4

          設計說明:學生在初中學習二次函數時知道二次函數的圖象是一個拋物線,在物理的學習中也接觸過拋物線(物體的運動軌跡)。因而對拋物線的認識比對前面學習的兩種圓錐曲線橢圓和雙曲線更多。所以學生學起來會輕松。但是要注意的是,現在所學的拋物線是方程的曲線而不是函數的圖象。本節內容是在學習了橢圓和雙曲線的基礎上,利用圓錐曲線的第二定義統一進行展開的,因而對于拋物線的系統學習具有雙重的目標性。

          拋物線作為點的軌跡,其標準方程的推導過程充滿了辨證法,處處是數與形之間的對照和相互轉化。而要得到拋物線的標準方程,必須建立適當的坐標系,還要依賴焦點和準線的相互位置關系,這是拋物線標準方程有四種而不象橢圓和雙曲線只有兩種形式。因而拋物線的標準方程的推導也是培養辨證唯物主義觀點的好素材。

          利用圓錐曲線第二定義通過類比方法,引導學生觀察和對比,啟發學生猜想與概括,利用建立坐標系求出拋物線的四種標準方程,讓每一個學生都能動手,動口,動腦參與教學過程,真正貫徹“教師為主導,學生為主體”的教學思想。對于標準方程中的參數及其幾何意義,焦點坐標和準線方程與的關系是本節課的重點內容,必須讓學生掌握如何根據標準方程求、焦點坐標、準線方程或根據后三者求拋物線的標準方程。特別對于一些有關距離的問題,要能靈活運用拋物線的定義給予解決。

          當前素質教育的主流是培養學生的能力,讓學生學會學習。本節課采用學生通過探索、觀察、對比分析,自己發現結論的學習方法,培養了學生邏輯思維能力,動手實踐能力以及探索的精神。

        高中數學說課稿 篇3

          各位老師:

          大家好!

          我叫***,來自**。我說課的題目是《古典概型》,內容選自于高中教材新課程人教A版必修3第三章第二節,課時安排為兩個課時,本節課內容為第一課時。下面我將從教材分析、教學目標分析、教法與學法分析、教學過程分析四大方面來闡述我對這節課的分析和設計:

          一、教材分析

          1.教材所處的地位和作用

          古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。它承接著前面學過的隨機事件的概率及其性質,又是以后學習條件概率的基礎,起到承前啟后的作用。

          2.教學的重點和難點

          重點:理解古典概型及其概率計算公式。

          難點:古典概型的判斷及把一些實際問題轉化成古典概型。

          二、教學目標分析

          1.知識與技能目標

          (1)通過試驗理解基本事件的概念和特點

         。2)在數學建模的過程中,抽離出古典概型的兩個基本特征,推導出古典概型下的概率的計算公式。

          2、過程與方法:

          經歷公式的推導過程,體驗由特殊到一般的數學思想方法。

          3、情感態度與價值觀:

          (1)用具有現實意義的實例,激發學生的學習興趣,培養學生勇于探索,善于發現的創新思想。

         。2)讓學生掌握"理論來源于實踐,并把理論應用于實踐"的辨證思想。

          三、教法與學法分析

          1、教法分析:根據本節課的特點,采用引導發現和歸納概括相結合的教學方法,通過提出問題、思考問題、解決問題等教學過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發學生的學習興趣,調動學生的主體能動性,讓每一個學生充分地參與到學習活動中來。

          2、學法分析:學生在教師創設的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結合,體現了學生的主體地位,培養了學生由具體到抽象,由特殊到一般的數學思維能力,形成了實事求是的科學態度。

          ㈠創設情景、引入新課

          在課前,教師布置任務,以小組為單位,完成下面兩個模擬試驗:

          試驗一:拋擲一枚質地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個數學小組至少完成20次(最好是整十數),最后由代表匯總;

          試驗二:拋擲一枚質地均勻的骰子,分別記錄"1點"、"2點"、"3點"、"4點"、"5點"和"6點"的次數,要求每個數學小組至少完成60次(最好是整十數),最后由代表匯總。

          在課上,學生展示模擬試驗的操作方法和試驗結果,并與同學交流活動感受,教師最后匯總方法、結果和感受,并提出兩個問題。

          1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?

          不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結果是頻率,而不是概率。

          2.根據以前的學習,上述兩個模擬試驗的每個結果之間都有什么特點?]

          「設計意圖」通過課前的模擬實驗,讓學生感受與他人合作的重要性,培養學生運用數學語言的能力。隨著新問題的提出,激發了學生的求知欲望,通過觀察對比,培養了學生發現問題的能力。

          ㈡思考交流、形成概念

          學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關特點加以說明,加深對新概念的理解。

          [基本事件有如下的兩個特點:

         。1)任何兩個基本事件是互斥的;

         。2)任何事件(除不可能事件)都可以表示成基本事件的和.]

          「設計意圖」讓學生從問題的相同點和不同點中找出研究對象的對立統一面,這能培養學生分析問題的能力,同時也教會學生運用對立統一的辯證唯物主義觀點來分析問題的一種方法。教師的注解可以使學生更好的把握問題的關鍵。

          例1從字母a、b、c、d中任意取出兩個不同字母的試驗中,有哪些基本事件?

          先讓學生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優點。

          「設計意圖」將數形結合和分類討論的思想滲透到具體問題中來。由于沒有學習排列組合,因此用列舉法列舉基本事件的個數,不僅能讓學生直觀的感受到對象的總數,而且還能使學生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數這一難點

          觀察對比,發現兩個模擬試驗和例1的共同特點:

          讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結得到的結論,教師最后補充說明。

          [經概括總結后得到:

         。1)試驗中所有可能出現的基本事件只有有限個;(有限性)

         。2)每個基本事件出現的可能性相等。(等可能性)

          我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型。

          「設計意圖」培養運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現了數學的化歸思想。啟發誘導的同時,訓練了學生觀察和概括歸納的能力。通過列出相同和不同點,能讓學生很好的理解古典概型。

         、缬^察分析、推導方程

          問題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?

          教師提出問題,引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結果,發現其中的聯系,最后概括總結得出古典概型計算任何事件的概率計算公式:

          「設計意圖」鼓勵學生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學生感受數學化歸思想的優越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點。

          提問:

         。1)在例1的實驗中,出現字母"d"的概率是多少?

         。2)在使用古典概型的概率公式時,應該注意什么?

          「設計意圖」教師提問,學生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關鍵。

         、枥}分析、推廣應用

          例2單選題是標準化考試中常用的題型,一般是從A,B,c,D四個選項中選擇一個正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?

          學生先思考再回答,教師對學生沒有注意到的關鍵點加以說明。

          「設計意圖」讓學生明確決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。鞏固學生對已學知識的掌握。

          例3同時擲兩個骰子,計算:

         。1)一共有多少種不同的結果?

         。2)其中向上的點數之和是5的結果有多少種?

         。3)向上的點數之和是5的概率是多少?

          先給出問題,再讓學生完成,然后引導學生分析問題,發現解答中存在的問題。引導學生用列表來列舉試驗中的基本事件的總數。

          「設計意圖」利用列表數形結合和分類討論,既能形象直觀地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養學生運用數形結合的思想,提高發現問題、分析問題、解決問題的能力,增強學生數學思維情趣,形成學習數學知識的積極態度。

         、樘骄克枷搿㈧柟躺罨

          問題思考:為什么要把兩個骰子標上記號?如果不標記號會出現什么情況?你能解釋其中的原因嗎?

          要求學生觀察對比兩種結果,找出問題產生的原因。

          「設計意圖」通過觀察對比,發現兩種結果不同的根本原因是--研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現了學生的主體地位,逐漸養成自主探究能力。

         、昕偨Y概括、加深理解

          1.基本事件的特點

          2.古典概型的特點

          3.古典概型的概率計算公式

          學生小結歸納,不足的地方老師補充說明。

          「設計意圖」使學生對本節課的知識有一個系統全面的認識,并把學過的相關知識有機地串聯起來,便于記憶和應用,也進一步升華了這節課所要表達的本質思想,讓學生的認知更上一層。

         、氩贾米鳂I

          課本練習1、2、3

          「設計意圖」進一步讓學生掌握古典概型及其概率公式,并能夠學以致用,加深對本節課的理解。

        高中數學說課稿 篇4

          各位老師你們好!今天我要為大家講的課題是

          首先,我對本節教材進行一些分析:

          一、教材分析(說教材):

          1. 教材所處的地位和作用:

          本節內容在全書和章節中的作用是:《 》是 中數學教材第 冊第 章第 節內容。在此之前學生已學習了 基礎,這為過渡到本節的學習起著鋪墊作用。本節內容是在 中,占據 的地位。以及為其他學科和今后的學習打下基礎。

          2. 教育教學目標:

          根據上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:

         。1)知識目標: (2)能力目標:通過教學初步培養學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結協作,語言表達能力以及通過師生雙邊活動,初步培養學生運用知識的能力,培養學生加強理論聯系實際的能力,(3)情感目標:通過 的教學引導學生從現實的生活經歷與體驗出發,激發學生學習興趣。

          3. 重點,難點以及確定依據:

          本著課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點

          重點: 通過 突出重點

          難點: 通過 突破難點

          關鍵:

          下面,為了講清重難上點,使學生能達到本節課設定的目標,再從教法和學法上談談:

          二、教學策略(說教法)

          1. 教學手段:

          如何突出重點,突破難點,從而實現教學目標。在教學過程中擬計劃進行如下操作:教學方法。基于本節課的特點: 應著重采用 的教學方法。

          2. 教學方法及其理論依據:堅持“以學生為主體,以教師為主導”的原則,根據學生的心理發展規律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現機會,培養其自信心,激發其學習熱情。有效的開發各層次學生的潛在智能,力求使學生能在原有的基礎上得到發展。同時通過課堂練習和課后作業,啟發學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數學知識,學習基礎性的知識和技能,在教學中積極培養學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力。

          3. 學情分析:(說學法)

          我們常說:“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。

         。1) 學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發展情況)抓住學

          生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發學生興趣,有效地培養學生能力,促進學生個性發展。生理上表少年好動,注意力易分散

         。2) 知識障礙上:知識掌握上,學生原有的知識 ,許多學生出現知識遺忘,所以應全面系統的去講述;學生學習本節課的知識障礙, 知識 學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。

         。3) 動機和興趣上:明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力

          最后我來具體談談這一堂課的教學過程:

          4. 教學程序及設想:

         。1)由 引入:把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。

         。2)由實例得出本課新的知識點

         。3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于學生的思維能力。

         。4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。

          (5)總結結論,強化認識。知識性的內容小結,可把課堂教學傳授的知識盡快化為學生的素質,數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐步培養學生良好的個性品質目標。

         。6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯,累積,加工,從而達到舉一反三的效果。

         。7)板書

         。8)布置作業。 針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高,

          教學程序:

          課堂結構:復習提問,導入講授課,課堂練習,鞏固新課,布置作業等五部分

        高中數學說課稿 篇5

          一、教學內容分析

          圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象.恰當地利用定義解題,許多時候能以簡馭繁.因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。

          二、學生學習情況分析

          我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。

          三、設計思想

          由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情.在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率.

          四、教學目標

          1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。

          2.通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

          3.借助多媒體輔助教學,激發學習數學的興趣.

          五、教學重點與難點:

          教學重點

          1.對圓錐曲線定義的理解

          2.利用圓錐曲線的定義求“最值”

          3.“定義法”求軌跡方程

          教學難點:

          巧用圓錐曲線定義解題

          六、教學過程設計

          【設計思路】

          (一)開門見山,提出問題

          一上課,我就直截了當地給出——

          例題1:(1) 已知A(-2,0), B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是( )。

          (A)橢圓 (B)雙曲線 (C)線段 (D)不存在

          (2)已知動點 M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是( )。

          (A)橢圓 (B)雙曲線 (C)拋物線 (D)兩條相交直線

          【設計意圖】

          定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節課首先要弄清楚的問題。

          為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。

          【學情預設】

          估計多數學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折—— 如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2

          5這樣,很快就能得出正確結果。如若不然,我將啟發他們從等式兩端的式子|3x4y|5

          入手,考慮通過適當的變形,轉化為學生們熟知的兩個距離公式。

          在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是 ,實軸長為 ,焦距為 。以深化對概念的理解。

          (二)理解定義、解決問題

          例2 (1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內切,求△ABC面積的最大值。

          (2)在(1)的條件下,給定點P(-2,2), 求|PA|

          七、教學反思

          1.本課將借助于“XXX”,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結合的教學優勢。

          2.利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學生思維能力,使學生從學會一個問題的求解到掌握一類問題的'解決方法. 循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。

          總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節奏仍是我今后工作中的一個重要研究課題.而要能真正進行素質教育,培養學生的創新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術,讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質,提高了數學思維能力。

        高中數學說課稿 篇6

          我將從教學理念;教材分析;教學目標;教學過程;教法、學法;教學評價六個方面來陳述我對本節課的設計方案。

          一、教學理念

          新的課程標準明確指出“數學是人類文化的重要組成部分,構成了公民所必須具備的一種基本素質。”其含義就是:我們不僅要重視數學的應用價值,更要注重其思維價值和人文價值。

          因此,創造性地使用教材,積極開發、利用各種教學資源,創設教學情境,讓學生通過主動參與、積極思考、與人合作交流和創新等過程,獲得情感、能力、知識的全面發展。本節課力圖打破常規,充分體現以學生為本,全方位培養、提高學生素質,實現課程觀念、教學方式、學習方式的轉變。

          二、教材分析

          三角函數是中學數學的重要內容之一,它既是解決生產實際問題的工具,又是學習高等數學及其它學科的基礎。本節課是在學習了任意角的三角函數,兩角和與差的三角函數以及正、余弦函數的圖象和性質后,進一步研究函數y=Asin(ωx+φ)的簡圖的畫法,由此揭示這類函數的圖象與正弦曲線的關系,以及A、ω、φ的物理意義,并通過圖象的變化過程,進一步理解正、余弦函數的性質,它是研究函數圖象變換的一個延伸,也是研究函數性質的一個直觀反映。共3課時,本節課是繼學習完振幅、周期、初相變換后的第二課時。

          本節課倡導學生自主探究,在教師的引導下,通過五點作圖法正確找出函數y=sinx到y=sin(ωx+φ)的圖象變換規律是本節課的重點。

          難點是對周期變換、相位變換先后順序調整后,將影響圖象平移量的理解。因此,分析清不管哪種順序變換,都是對一個字母x而言的變換成為突破本節課教學難點的關鍵。

          依據《課標》,根據本節課內容和學生的實際,我確定如下教學目標。

          三、教學目標

         。壑R與技能]

          通過“五點作圖法”正確找出函數y=sinx到y=sin(ωx+φ)的圖象變換規律,能用五點作圖法和圖象變換法畫出函數y=Asin(ωx+φ)的簡圖,能舉一反三地畫出函數y=Asin(ωx+φ)+k和y=Acos(ωx+φ)的簡圖。

         。圻^程與方法]

          通過引導學生對函數y=sinx到y=sin(ωx+φ)的圖象變換規律的探索,讓學生體會到由簡單到復雜,特殊到一般的化歸思想;并通過對周期變換、相位變換先后順序調整后,將影響圖象變換這一難點的突破,讓學生學會抓住問題的主要矛盾來解決問題的基本思想方法。

         。矍楦袘B度與價值觀]

          課堂中,通過對問題的自主探究,培養學生的獨立意識和獨立思考能力;小組交流中,學會合作意識;在解決問題的難點時,培養學生解決問題抓主要矛盾的思想。在問題逐步深入的研究中喚起學生追求真理,樂于創新的情感需求,引發學生渴求知識的強烈愿望,樹立科學的人生觀、價值觀。

          四、教學過程(六問三練)

          1、設置情境

          《函數y=Asin(ωx+φ)的圖象(第二課時)》說課稿。

        高中數學說課稿 篇7

          各位評委老師好:今天我說課的題目是

          是必修章第節的內容,我將以新課程標準的理念指導本節課的教學,從教材分析,教法學法,教學過程,教學評價四個方面加以說明。

          一、 教材分析

          是在學習了基礎上進一步研究 并為后面學習 做準備,在整個高中數學中起著承上啟下的作用,因此本節內容十分重要。

          根據新課標要求和學生實際水平我制定以下教學目標

          1、 知識能力目標:使學生理解掌握

          2、 過程方法目標:通過觀察歸納抽象概括使學生構建領悟 數學思想,培養 能力

          3、 情感態度價值觀目標:通過學習體驗數學的科學價值和應用價值,培養善于

          觀察勇于思考的學習習慣和嚴謹 的科學態度

          根據教學目標、本節特點和學生實際情況本節重點是 ,由于學生對 缺少感性認識,所以本節課的重點是

          二、教法學法

          根據教師主導地位和學生主體地位相統一的規律,我采用引導發現法為本節課的主要教學方法并借助多媒體為輔助手段。在教師點撥下,學生自主探索、合作交流來尋求解決問題的方法。

          三、 教學過程

          1、由……引入:

          把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實際情況下進行學習,可以使學生利用已有知識與經驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。

          對于本題:……

          2、由實例得出本課新的知識點是:……

          3、講解例題。

          我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于發展學生的思維能力。在題中:

          4、能力訓練。

          課后練習……

          使學生能鞏固羨慕自覺運用所學知識與解題思想方法。

          5、總結結論,強化認識。

          知識性內容的小結,可把課堂教學傳授的知識盡快化為學生的素質;數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐漸培養學生的良好的個性品質目標。

          6、變式延伸,進行重構。

          重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯、累積、加工,從而達到舉一反三的效果。

          四、教學評價

          學生學習的學習結果評價當然重要,但是更重要的是學生學習的過程評價,教師應當高度重視學生學習過程中的參與度、自信心、團隊精神合作意識數學能力的發現,以及學習的興趣和成就感。

        高中數學說課稿 篇8

          大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設計。

          一 教材分析

          本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

          根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:

          認知目標:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理與三角形的內角和定理解斜三角形的兩類問題。

          能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。

          情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,給學生成功的體驗,激發學生學習的興趣。

        教學重點:正弦定理的內容,正弦定理的證明及基本應用。

          教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數。

          二 教法

          根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當的提示和指導。突破難點的方法:抓住學生的能力線聯系方法與技能使學生較易證明正弦定理,另外通過例題和練習來突破難點

          三 學法:

          指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。

          四 教學過程

          第一:創設情景,大概用2分鐘

          第二:實踐探究,形成概念,大約用25分鐘

          第三:應用概念,拓展反思,大約用13分鐘

          (一)創設情境,布疑激趣

          “興趣是最好的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。

         。ǘ┨綄ぬ乩,提出猜想

          1.激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。

          2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。

          3.讓學生總結實驗結果,得出猜想:

          在三角形中,角與所對的邊滿足關系

          這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。

         。ㄈ┻壿嬐评恚C明猜想

          1.強調將猜想轉化為定理,需要嚴格的理論證明。

          2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。

          3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。

          4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明

         。ㄋ模w納總結,簡單應用

          1.讓學生用文字敘述正弦定理,引導學生發現定理具有對稱和諧美,提升對數學美的享受。

          2.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。

          3.運用正弦定理求解本節課引引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。

         。ㄎ澹┲v解例題,鞏固定理

          1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

          例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

          2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

        【有關高中數學說課稿模板集合八篇】相關文章:

        有關高中數學說課稿模板集合9篇07-27

        有關高中數學說課稿模板集合6篇07-25

        有關高中數學說課稿模板集合六篇07-20

        有關高中數學說課稿模板集合七篇07-30

        有關高中數學說課稿模板六篇07-15

        高中數學說課稿模板集合五篇07-18

        有關高中數學說課稿模板匯編五篇07-30

        有關高中數學說課稿模板集錦10篇07-28

        有關高中數學說課稿模板集錦7篇07-24

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>