有關高中數學說課稿范文匯編9篇
作為一名教師,可能需要進行說課稿編寫工作,借助說課稿可以有效提升自己的教學能力。那么什么樣的說課稿才是好的呢?下面是小編精心整理的高中數學說課稿9篇,希望對大家有所幫助。
高中數學說課稿 篇1
一、教學目標
1.掌握任意角的正弦、余弦、正切函數的定義(包括定義域、正負符號判斷);了解任意角的余切、正割、余割函數的定義.
2.經歷從銳角三角函數定義過度到任意角三角函數定義的推廣過程,體驗三角函數概念的產生、發展過程.領悟直角坐標系的工具功能,豐富數形結合的經驗.
3.培養學生通過現象看本質的唯物主義認識論觀點,滲透事物相互聯系、相互轉化的辯證唯物主義世界觀.
4.培養學生求真務實、實事求是的科學態度.
二、重點、難點、關鍵
重點:任意角的正弦、余弦、正切函數的定義、定義域、(正負)符號判斷法.
難點:把三角函數理解為以實數為自變量的函數.
關鍵:如何想到建立直角坐標系;六個比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化).
三、教學理念和方法
教學中注意用新課程理念處理傳統教材,學生的數學學習活動不僅要接受、記憶、模仿和練習,而且要自主探索、動手實踐、合作交流、閱讀自學,師生互動,教師發揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質、經歷過程.
根據本節課內容、高一學生認知特點和我自己的教學風格,本節課采用"啟發探索、講練結合"的方法組織教學.
四、教學過程
[執教線索:
回想再認:函數的概念、銳角三角函數定義(銳角三角形邊角關系)--問題情境:能推廣到任意角嗎?--它山之石:建立直角坐標系(為何?)--優化認知:用直角坐標系研究銳角三角函數--探索發展:對任意角研究六個比值(與角之間的關系:確定性、依賴性,滿足函數定義嗎?)--自主定義:任意角三角函數定義--登高望遠:三角函數的要素分析(對應法則、定義域、值域與正負符號判定)--例題與練習--回顧小結--布置作業]
。ㄒ唬⿵土曇搿⒒叵朐僬J
開門見山,面對全體學生提問:
在初中我們初步學習了銳角三角函數,前幾節課,我們把銳角推廣到了任意角,學習了角度制和弧度制,這節課該研究什么呢?
探索任意角的三角函數(板書課題),請同學們回想,再明確一下:
(情景1)什么叫函數?或者說函數是怎樣定義的?
讓學生回想后再點名回答,投影顯示規范的定義,教師根據回答情況進行修正、強調:
傳統定義:設在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應,那么就說y是x的函數,x叫做自變量,自變量x的取值范圍叫做函數的定義域.
現代定義:設A、B是非空的數集,如果按某個確定的對應關系f,使對于集合A中的任意一個數,在集合B中都有唯一確定的數f(x)和它對應,那么就稱映射?:A→B為從集合A到集合B的一個函數,記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數的定義域.
設計意圖:
函數和三角函數是一般和特殊的關系,是共性和個性的關系,學生已經學習了函數的概念,因此對三角函數的學習就是一個從一般到特殊的演繹的過程,也是以具體函數豐富函數概念的過程.教學經驗表明:學生對函數兩種定義的記憶是有一定困難的,容易遺忘,此處讓學生對函數概念進行回想再認,目的在于明確函數概念的本質,為演繹學習任意角三角函數概念作好知識和認知準備.
。ㄇ榫2)我們在初中通過銳角三角形的邊角關系,學習了銳角的正弦、余弦、正切等三個三角函數.請回想:這三個三角函數分別是怎樣規定的?
學生口述后再投影展示,教師再根據投影進行強調:
設計意圖:
學生在初中學習了銳角的三角函數概念,現在學習任意角的三角函數,又是一種推廣和拓展的過程(類似于從有理數到實數的擴展).溫故知新,要讓學生體會知識的產生、發展過程,就要從源頭上開始,從學生現有認知狀況開始,對銳角三角函數的復習就必不可少.
(二)引伸鋪墊、創設情景
(情景3)我們已經把銳角推廣到了任意角,銳角的三角函數概念也能推廣到任意角嗎?試試看,可以獨立思考和探索,也可以互相討論!
留時間讓學生獨立思考或自由討論,教師參與討論或巡回對學困生作啟發引導.
能推廣嗎?怎樣推廣?針對剛才的問題點名讓學生回答.用角的對邊、臨邊、斜邊比值的說法顯然是受到阻礙了,由于4.1節已經以直角坐標系為工具來研究任意角了,學生一般會想到(否則教師進行提示)繼續用直角坐標系來研究任意角的三角函數.
設計意圖:
從學生現有知識水平和認知能力出發,創設問題情景,讓學生產生認知沖突,進行必要的啟發,將學生思維引上自主探索、合作交流的"再創造"征程.
教師對學生回答情況進行點評后布置任務情景:請同學們用直角坐標系重新研究銳角三角函數定義!
師生共做(學生口述,教師板書圖形和比值):
把銳角α安裝(如何安裝?角的頂點與原點重合,角的始邊與x軸非負半軸重合)在直角坐標系中,在角α終邊上任取一點P,作Pm⊥x軸于m,構造一個RtΔomP,則∠moP=α(銳角),設P(x,y)(x>0、y>0),α的臨邊om=x、對邊mP=y,斜邊長|oP∣=r.
根據銳角三角函數定義用x、y、r列出銳角α的正弦、余弦、正切三個比值,并補充對應列出三個倒數比值:
設計意圖:
此處做法簡單,思想重要.為了順利實現推廣,可以構建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形.由于前一節已經以直角坐標系為工具來研究任意角了,學生自然能想到仍然以直角坐標系為工具來研究任意角的三角函數.初中以直角三角形邊角關系來定義銳角三角函數,現在要用坐標系來研究,探索的結論既要滿足任意角的情形,又要包容初中銳角三角函數定義.這是一個認識的飛躍,是理解任意角三角函數概念的關鍵之一,也是數學發現的重要思想和方法,屬于策略性知識,能夠形成遷移能力,為學生在以后學習中對某些知識進行推廣拓展奠定了基礎(譬如從平面向量到空間向量的擴展,從實數到復數的擴展等).
(情景4)各個比值與角之間有怎樣的關系?比值是角的函數嗎?
追問:銳角α大小發生變化時,比值會改變嗎?
先讓學生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:保持r不變,讓P繞原點o旋轉即α在銳角范圍內變化,六個比值隨之變化的直觀形象。結論是:比值隨α的變化而變化.
引導學生觀察圖3,聯系相似三角形知識,
探索發現:
對于銳角α的每一個確定值,六個比值都是
確定的,不會隨P在終邊上的移動而變化.
得出結論(強調):當α為銳角時,六個比值隨α的變化而變化;但對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.所以,六個比值分別是以角α為自變量、以比值為函數值的函數.
設計意圖:
初中學生對函數理解較膚淺,這里在學生思維的最近發展區進一步研究初中學過的銳角三角函數,在思維上更上了一個層次,扣準函數概念的內涵,突出變量之間的依賴關系或對應關系,是從函數知識演繹到三角函數知識的主要依據,是準確理解三角函數概念的關鍵,也是在認知上把三角函數知識納入函數知識結構的關鍵.這樣做能夠使學生有效地增強函數觀念.
。ㄈ┓治鰵w納、自主定義
。ㄇ榫5)能將銳角的比值情形推廣到任意角α嗎?
水到渠成,師生共同進行探索和推廣:
對于一個任意角α,它的終邊所在位置包括下列兩類共八種情形(投影展示并作分析):
終邊分別在四個象限的情形:終邊分別在四個半軸上的情形:
;
。ㄖ赋觯翰划嫵鼋堑姆较,表明角具有任意性)
怎樣刻畫任意角的三角函數呢?研究它的六個比值:
。ò鍟┰Oα是一個任意角,在α終邊上除原點外任意取一點P(x,y),P與原點o之間的距離記作r(r=>0),列出六個比值:
α=kππ/2時,x=0,比值y/x、r/x無意義;
α=kπ時,y=0,比值x/y、r/y無意義.
追問:α大小發生變化時,比值會改變嗎?
先讓學生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:使r保持不變,P繞原點o逆時針、順時針旋轉即角α變化,六個比值隨之改變的直觀形象。結論是:各比值隨α的變化而變化.
再引導學生利用相似三角形知識,探索發現:對于任意角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.
綜上得到(強調):當角α變化時,六個比值隨之變化;對于確定的角α,六個比值(如果存在的話)都不會隨P在角α終邊上的改變而改變,六個比值是確定的(對應的多值性即誘導公式一留到下節課分析).
因此,六個比值分別是以角α為自變量、以比值為函數值的函數.
根據歷史上的規定,對比值進行命名,指出英文記法和讀法,記作(承前作復合板書):
=sinα(正弦)=cosα(余弦)=tanα(正切)
=cscα(余割)=sec(正弦)=cotα(余切)
教師強調:sinα表示sin與α的乘積嗎?不是,sinα是函數記號,是一個整體,相當于函數記號f(x).其它幾個三角函數也如此
投影顯示圖六,指導學生分析其對應關系,進一步體會其函數內涵:
(圖六)
指導學生識記六個比值及函數名稱.
教師指出:正弦、余弦、正切、余切、正割、余割六個函數統稱為三角函數,三角函數有非常豐富的知識和思想方法,我們以后主要學習正弦、余弦、正切三個函數的相關知識和方法,對于余切、正割、余割,只要同學們了解它們的定義就夠了(遵循大綱要求).
引導學生進一步分析理解:
已知角的集合與實數集之間可以建立一一對應關系,對于每一個確定的實數,把它看成一個弧度數,就對應著唯一的一個角,從而分別對應著六個唯一的三角函數值.因此,(板書)三角函數可以看成是以實數為自變量的函數,這將為以后的應用帶來很多方便.
設計意圖:
把角的終邊分別在四個象限、四條半軸上的情形全作出來,有利于對任意性的全面把握.明確比值存在與否的條件,為確定函數定義域作準備.動畫演示比值與角之間的依賴性與確定性關系,深化理解三角函數內涵.引導學生在理解的基礎上自主地對三角函數作出明確定義,是本節課的中心任務.由于學生剛學弧度制,對弧度制的理解有待于在以后的學習應用中逐步感悟,因此部分學生對"三角函數可以看成是以實數為自變量的函數"的理解有半信半疑之感,有待通過后續的應用加深理解.
。ㄋ模┨剿鞫x域
(情景6)(1)函數概念的三要素是什么?
函數三要素:對應法則、定義域、值域.
正弦函數sinα的對應法則是什么?
正弦函數sinα的對應法則,實質上就是sinα的定義:對α的每一個確定的值,有唯一確定的比值y/r與之對應,即α→y/r=sinα.
(2)布置任務情景:什么是三角函數的定義域?請求出六個三角函數的定義域,填寫下表:
三角函數
sinα
cosα
tanα
cotα
cscα
secα
定義域
引導學生自主探索:
如果沒有特別說明,那么使解析式有意義的自變量的取值范圍叫做函數的定義域,三角函數的定義域自然是指:使比值有意義的角α的取值范圍.
關于sinα=y/r、cosα=x/r,對于任意角α(弧度數),r>0,y/r、x/r恒有意義,定義域都是實數集R.
對于tanα=y/x,α=kππ/2時x=0,y/x無意義,tanα的定義域是:{α|α∈R,且α≠kππ/2}..........
教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數定義在理解的基礎上記熟,cotα、cscα、secα的定義域不要求記憶.
。P于值域,到后面再學習).
設計意圖:
定義域是函數三要素之一,研究函數必須明確定義域.指導學生根據定義自主探索確定三角函數定義域,有利于在理解的基礎上記住它、應用它,也增進對三角函數概念的掌握.
。ㄎ澹┓柵袛、形象識記
(情景7)能判斷三角函數值的正、負嗎?試試看!
引導學生緊緊抓住三角函數定義來分析,r>0,三角函數值的符號決定于x、y值的正負,根據終邊所在位置總結出形象的識記口訣:
(同好得正、異號得負)
sinα=y/r:上正下負橫為0cosα=x/r:左負右正縱為0tanα=y/x:交叉正負
設計意圖:
判斷三角函數值的正負符號,是本章教材的一項重要的知識、技能要求.要引導學生抓住定義、數形結合判斷和記憶三角函數值的正負符號,并總結出形象的識記口訣,這也是理解和記憶的關鍵.
。┚毩曥柟、理解記憶
1、自學例1:已知角α的終邊經過點P(2,-3),求α的六個三角函數值.
要求:讀完題目,思考:計算什么?需要準備什么?閉目心算,對照解答,模仿書面表達格式,鞏固定義.
課堂練習:
p19題1:已知角α的終邊經過點P(-3,-1),求α的六個三角函數值.
要求心算,并提問中下學生檢驗,--------
點評:角α終邊上有無窮多個點,根據三角函數的定義,只要知道α終邊上任意一個點的坐標,就可以計算這個角的三角函數值(或判斷其無意義).
補充例題:已知角α的終邊經過點P(x,-3),cosα=4/5,求α的其它五個三角函數值.
師生探索:已知y=-3,要求其它五個三角函數值,須知r=?,x=?.根據定義得=(方程思想),x>0,解得x=4,從而--------.解答略.
2、自學例2:求下列各角的六個三角函數值:(1)0;(2)π/2;(3)3π/2.
提問,據反饋信息作點評、修正.
師生探索:緊扣三角函數定義求解,首先要在終邊上取定一點。終邊在哪兒呢?取定哪一點呢?任意點、還是特殊點?要靈活,只要能夠算出三角函數值,都可以。
取特殊點能使計算更簡明。課堂練習:p19題2.(改編)填表:
角α(角度)
0°
90°
180°
270°
360°
角α(弧度)
sinα
cosα
tanα
處理:要求取點用定義求解,針對計算過程提問、點評,理解鞏固定義.
強調:終邊在坐標軸上的角叫軸線角,如0、π/2、π、3π/2等,今后經常用到軸線角的三角函數值,要結合三角函數定義記熟這些值.
設計意圖:
及時安排自學例題、自做教材練習題,一般性與特殊性相結合,進行適量的變式練習,以鞏固和加深對三角函數概念的理解,通過課堂積極主動的練習活動進行思維訓練,把"培養學生分析解決問題的能力"貫穿在每一節課的課堂教學始終.
(七)回顧小結、建構網絡
要求全體學生根據教師所提問題進行總結識記,提問檢查并強調:
1.你是怎樣把銳角三角函數定義推廣到任意角的?或者說任意角三角函數具體是怎樣定義的?(建立直角坐標系,使角的頂點與坐標原點重合,---,在終邊上任意取定一點P,---)
2.你如何判斷和記憶正弦、余弦、正切函數的定義域?(根據定義,------)
3.你如何記憶正弦、余弦、正切函數值的符號?(根據定義,想象坐標位置,-----)
設計意圖:
遺忘的規律是先快后慢,回顧再現是記憶的重要途徑,在課堂內及時總結識記主要內容是上策.此處以問題形式讓學生自己歸納識記本節課的主體內容,抓住要害,人人參與,及時建構知識網絡,優化知識結構,培養認知能力.
。ò耍┎贾谜n外作業
1.書面作業:習題4.3第3、4、5題.
2.認真閱讀p22"閱讀材料:三角函數與歐拉",了解歐拉的生平和貢獻,特別學習他對科學的摯著精神和堅忍不拔的頑強毅力!有興趣的同學可以上網查閱歐拉的相關情況.
教學設計說明
一、對本節教材的理解
三角函數是描述周期運動現象的重要的數學模型,有非常廣泛的應用.
星星之火,可以燎原.
直角三角形簡單樸素的邊角關系,以直角坐標系為工具進行自然地推廣而得到簡明的任意角的三角函數定義,緊緊扣住三角函數定義這個寶貴的源泉,自然地導出三角函數線、定義域、符號判斷、值域、同角三角函數關系、多組誘導公式、多組變換公式、輔助角公式、圖象和性質,本章教材就是這些內容的具體安排.定義直接用于解析幾何(如直線斜率公式、極坐標、部分曲線的參數方程等),定義還是直接解決某些問題的工具,三角函數知識是物理學、高等數學、測量學、天文學的重要基礎.
三角函數定義必然是學好全章內容的關鍵,如果學生掌握不好,將直接影響到后續內容的學習,由三角函數定義的基礎性和應用的廣泛性決定了本節教材的重點就是定義本身.
二、教學法加工
數學教材通常用抽象概括的形式化的數學書面語言闡述其知識和方法,教師只有通過教學法加工,始終貫徹"以學生的發展為本"的科學教育觀,"將數學的學術形態轉化為教育形態"(張奠宙語),引導學生積極主動地進行思考活動,直接參與體驗數學知識產生發展的背景、過程,返璞歸真,揭示本質,體會其中的思想和方法,學生只有這樣才能真正理解掌握數學知識和方法,有效地發展智力、培養能力.
在本節教材中,三角函數定義是重點,三角函數線是難點,為了較好地突出重點和突破難點,分散重點和難點,同時兼顧例題、課堂練習的協調匹配,將不按教材順序來進行教學,第一課時安排三角函數的定義(突出重點)、定義域、符號判斷、例題1、2及p19課堂練習1、2、3,第二課時安排三角函數線、p15練習(突破難點)、誘導公式一及課本例題3、4和其它練習.本課例屬第一課時.
教學經驗表明,三角函數定義"簡單易記",學生很容易輕視它,不少學生機械記憶、一知半解.本課例堅持"教師主導、學生主體"的原則,采用"啟發探索、講練結合"的常規教學方法,在學生的最近發展區圍繞學生的學習目標設計了一系列符合學生認知規律的程序,通過多媒體輔助教學動畫演示比值與角之間的依賴關系,拓展思維活動時空,力求使學生全員主動參與,積極思考,體會定義產生、發展的過程,通過思維過程來理解知識、培養能力.
將六個比值放在一起來研究,同時給出六個三角函數的定義,能夠增強對比感和整體感,至于大綱對兩組函數掌握與了解的不同要求,在下一步的教學中注意區分就行了.
教學中關于符號sinα、cosα、tanα的出場安排,教材首先對比值取名并給出英文記法,再研究它們與α的函數關系;另外可以先研究六個比值與α之間的函數關系,然后再對六個比值取名給出記法.后者更能突出函數內涵,揭示三角函數本質.本課例采用后者組織教學.
三、教學過程分析(見穿插在教案中的設計意圖).
高中數學說課稿 篇2
一、教材分析
1、教學內容
本節課內容教材共分兩課時進行,這是第一課時,該課時主要學習函數的單調性的的概念,依據函數圖象判斷函數的單調性和應用定義證明函數的單調性。
2、教材的地位和作用
函數單調性是高中數學中相當重要的一個基礎知識點,是研究和討論初等函數有關性質的基礎。掌握本節內容不僅為今后的函數學習打下理論基礎,還有利于培養學生的抽象思維能力,及分析問題和解決問題的能力。
3、教材的重點﹑難點﹑關鍵
教學重點:函數單調性的概念和判斷某些函數單調性的方法。明確單調性是一個局部概念。
教學難點:領會函數單調性的實質與應用,明確單調性是一個局部的概念。
教學關鍵:從學生的學習心理和認知結構出發,講清楚概念的形成過程、
4、學情分析
高一學生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發展,但學生思維不成熟、不嚴密、意志力薄弱,故而整個教學環節總是創設恰當的問題情境,引導學生積極思考,培養他們的邏輯思維能力。從學生的認知結構來看,他們只能根據函數的圖象觀察出“隨著自變量的增大函數值增大”等變化趨勢,所以在教學中要充分利用好函數圖象的直觀性,發揮好多媒體教學的優勢;由于學生在概念的掌握上缺少系統性、嚴謹性,在教學中注意加強。
二、目標分析
。ㄒ唬┲R目標:
1、知識目標:理解函數單調性的概念,掌握判斷一些簡單函數的單調性的方法;了解函數單調區間的概念,并能根據函數圖象說出函數的單調區間。
2、能力目標:通過證明函數的單調性的學習,使學生體驗和理解從特殊到一般的數學歸納推理思維方式,培養學生的觀察能力,分析歸納能力,領會數學的歸納轉化的思想方法,增加學生的知識聯系,增強學生對知識的主動構建的能力。
3、情感目標:讓學生積極參與觀察、分析、探索等課堂教學的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發求知欲望。領會用運動變化的觀點去觀察分析事物的方法。通過滲透數形結合的數學思想,對學生進行辨證唯物主義的思想教育。
。ǘ┻^程與方法
培養學生嚴密的邏輯思維能力以及用運動變化、數形結合、分類討論的方法去分析和處理問題,以提高學生的思維品質,通過函數的單調性的學習,掌握自變量和因變量的關系。通過多媒體手段激發學生學習興趣,培養學生發現問題、分析問題和解題的邏輯推理能力。
三、教法與學法
1、教學方法
在教學中,要注重展開探索過程,充分利用好函數圖象的直觀性、發揮多媒體教學的優勢。本節課采用問答式教學法、探究式教學法進行教學,教師在課堂中只起著主導作用,讓學生在教師的提問中自覺的發現新知,探究新知,并且加入激勵性的語言以提高學生的積極性,提高學生參與知識形成的全過程。
2、學習方法
自我探索、自我思考總結、歸納,自我感悟,合作交流,成為本節課學生學習的主要方式。
四、過程分析
本節課的教學過程包括:問題情景,函數單調性的定義引入,增函數、減函數的定義,例題分析與鞏固練習,回顧總結和課外作業六個板塊。這里分別就其過程和設計意圖作一一分析。
(一)問題情景:
為了激發學生的學習興趣,本節課借助多媒體設計了多個生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學生交流,激發學生的`學習興趣和求知欲望,為學習函數的單調性做好鋪墊。(祥見課件)
新課程理念認為:情境應貫穿課堂教學的始終。本節課所創設的生活情境,讓學生親近數學,感受到數學就在他們的周圍,強化學生的感性認識,從而達到學生對數學的理解。讓學生在課堂的一開始就感受到數學就在我們身邊,讓學生學會用數學的眼光去關注生活。
。ǘ┖瘮祮握{性的定義引入
1、幾何畫板動畫演示,請學生認真觀察,并回答問題:通過學生已學過的函數y=2x+4,,的圖象的動態形式形象出x、y間的變化關系,使學生對函數單調性有感性認識。,進行比較,分析其變化趨勢。并探討、回答以下問題:
問題1、觀察下列函數圖象,從左向右看圖象的變化趨勢?
問題2:你能明確說出“圖象呈上升趨勢”的意思嗎?
通過學生的交流、探討、總結,得到單調性的“通俗定義”:
從在某一區間內當x的值增大時,函數值y也增大,到圖象在該區間內呈上升趨勢再到如何用x與f(x)來描述上升的圖象?
通過問題逐步向抽象的定義靠攏,將圖形語言轉化為數學符號語言。幾何畫板的靈活使用,數形有機結合,引導學生從圖形語言到數學符號語言的翻譯變得輕松。
設計意圖:
、偻ㄟ^學生熟悉的知識引入新課題,有利于激發學生的學習興趣和學習熱情,同時也可以培養學生觀察、猜想、歸納的思維能力和創新意識,增強學生自主學習、獨立思考,由學會向會學的轉化,形成良好的思維品質。
、谕ㄟ^學生已學過的一次y=2x+4,,的圖象的動態形式形象地反映出x、y間的變化關系,使學生對函數單調性有感性認識。
③從學生的原有認知結構入手,探討單調性的概念,符合“最近發展區的理論”要求。
④從圖形、直觀認識入手,研究單調性的概念,其本身就是研究、學習數學的一種方法,符合新課程的理念。
(三)增函數、減函數的定義
在前面的基礎上,讓學生討論歸納:如何使用數學語言來準確描述函數的單調性?在學生回答的基礎上,給出增函數的概念,同時要求學生討論概念中的關鍵詞和注意點。
定義中的“當x1x2時,都有f(x1) 注意: (1)函數的單調性也叫函數的增減性; 。2)注意區間上所取兩點x1,x2的任意性; 。3)函數的單調性是對某個區間而言的,它是一個局部概念。 讓學生自已嘗試寫出減函數概念,由兩名學生板演。提出單調區間的概念。 設計意圖:通過給出函數單調性的嚴格定義,目的是為了讓學生更準確地把握概念,理解函數的單調性其實也叫做函數的增減性,它是對某個區間而言的,它是一個局部概念,同時明確判定函數在某個區間上的單調性的一般步驟。這樣處 理,同時也是讓學生感悟、體驗學習數學感念的方法,提高其個性品質。 。ㄋ模├}分析 在理解概念的基礎上,讓學生總結判別函數單調性的方法:圖象法和定義法。 2、例2、證明函數在區間(—∞,+∞)上是減函數。 在本題的解決過程中,要求學生對照定義進行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結證明單調性問題的一般方法。 變式一:函數f(x)=—3x+b在R上是減函數嗎?為什么? 變式二:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來判斷。 變式三:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來判斷。 錯誤:實質上并沒有證明,而是使用了所要證明的結論 例題設計意圖:在理解概念的基礎上,讓學生總結判別函數單調性的方法:圖象法和定義法。例1是教材中例題,它的解決強化學生應用數形結合的思想方法解題的意識,進一步加深對概念的理解,同時也是依托具體問題,對單調區間這一概念的再認識;要了解函數在某一區間上是否具有單調性,從圖上進行觀察是一種常用而又粗略的方法。嚴格地說,它需要根據單調函數的定義進行證明。例2是教材練習題改編,通過師生共同總結,得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結論,通過例2的解決是學生初步掌握運用概念進行簡單論證的基本方法,強化證題的規范性訓練,從而提高學生的推理論證能力。例3是教材例2抽象出的數學問題。目的是進一步強化解題的規范性,提高邏輯推理能力,同時讓學生學會一些常見的變形方法。 。ㄎ澹╈柟膛c探究 1、教材p36練習2,3 2、探究:二次函數的單調性有什么規律? 。◣缀萎嫲逖菔,學生探究)本問題作為機動題。時間不允許時,就為課后思考題。 設計意圖:通過觀察圖象,對函數是否具有某種性質作出一種猜想,然后通過推理的辦法,證明這種猜想的正確性,是發現和解決問題的一種常用數學方法。 通過課堂練習加深學生對概念的理解,進一步熟悉證明或判斷函數單調性的方法和步驟,達到鞏固,消化新知的目的。同時強化解題步驟,形成并提高解題能力。對練習的思考,讓學生學會反思、學會總結。 (六)回顧總結 通過師生互動,回顧本節課的概念、方法。本節課我們學習了函數單調性的知識,同學們要切記:單調性是對某個區間而言的,同時在理解定義的基礎上,要掌握證明函數單調性的方法步驟,正確進行判斷和證明。 設計意圖:通過小結突出本節課的重點,并讓學生對所學知識的結構有一個清晰的認識,學會一些解決問題的思想與方法,體會數學的和諧美。 。ㄆ撸┱n外作業 1、教材p43習題1。3A組1(單調區間),2(證明單調性); 2、判斷并證明函數在上的單調性。 3、數學日記:談談你本節課中的收獲或者困惑,整理你認為本節課中的最重要的知識和方法。 設計意圖:通過作業1、2進一步鞏固本節課所學的增、減函數的概念,強化基本技能訓練和解題規范化的訓練,并且以此作為學生對本結內容各項目標落實的評價。新課標要求:不同的學生學習不同的數學,在數學上獲得不同的發展。作業3這種新型的作業形式是其很好的體現。 。ㄆ撸┌鍟O計(見ppt) 五、評價分析 有效的概念教學是建立在學生已有知識結構基礎上,,因此在教學設計過程中注意了: 第一、教要按照學的法子來教; 第二、在學生已有知識結構和新概念間尋找“最近發展區”; 第三、強化了重探究、重交流、重過程的課改理念。讓學生經歷“創設情境——探究概念——注重反思——拓展應用——歸納總結”的活動過程,體驗了參與數學知識的發生、發展過程,培養“用數學”的意識和能力,成為積極主動的建構者。 本節課圍繞教學重點,針對教學目標,以多媒體技術為依托,展現知識的發生和形成過程,使學生始終處于問題探索研究狀態之中,激情引趣,并注重數學科學研究方法的學習,是順應新課改要求的,是研究性教學的一次有益嘗試。 一、教材分析: 1、教材的地位與作用。 本節內容是在學生學習了“事件的可能性的基礎上來學習如何預測不確定事件(隨機事件)發生的可能性的大小!庇酶怕暑A測隨機發生的可能性大小,在日常生活、自然、科技領域有著廣泛的應用,學習本單元知識,無論是今后繼續深造(高中學習概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學生較難理解。 在教材的處理上,采取小單元教學,本節課安排讓學生了解求隨機事件概率的兩種方法,目的是讓學生能夠比較系統地理解概率的意義及求概率的方法,為下面學習求比較復雜的情況的概率打下基礎。 2、重點與難點。 重點:對概率意義的理解,通過多次重復實驗,用頻率預測概率的方法,以及用列舉法求概率的方法。 難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發生的總數及總的結果數的分析。 二、目的分析: 知識與技能:掌握用頻率預測概率和用列舉法求概率方法。 過程與方法:組織學生自主探究,合作交流,引導學生觀察試驗和統計的結果,進而進行分析、歸納、總結,了解并感受概率的定義的過程,引導學生從數學的視角觀察客觀世界,用數學的思維思考客觀世界,以數學的語言描述客觀世界。 情感態度價值觀:學生經歷觀察、分析、歸納、確認等數學活動,感受數學活動充滿了探索性與創造性,感受量變與質變的對立統一規律,同時為概率的精準、新穎、獨特的思維方法所震撼,激發學生學習數學的熱情,增強對數學價值觀的認識。 三、教法、學法分析: 引導學生自主探究、合作交流、觀察分析、歸納總結,讓學生經歷知識(概率定義計算公式)的產生和發展過程,讓學生在數學活動中學習數學、掌握數學,并能應用數學解決現實生活中的實際問題,教師是學生學習的組織者、合作者和指導者,精心設計教學情境,有序組織學生活動,讓課堂充滿生機活力,體現“教” 為“學”服務這一宗旨。 四、教學過程分析: 1、引導學生探究 精心設計問題一,學生通過對問題一的探究,一方面復習前面學過的“確定事件和不確定事件”的知識,為學好本節內容理清知識障礙,二是讓學生明確為什么要學習概率(如何預測隨機事件可能性發生大小)。引導學生對問題二的探究與觀察實驗數據,使學生了解概率這一重要概念的實際背景,感受并相信隨機事件的發生中存在著統計規律性,感受數學規律的真實的發現過程。 2、歸納概括 學生從試驗中得到的統計數字及概率呈現穩定在某一數值附近這一規律,讓學生明確概率定義的由來。 引導學生重新對問題一和問題二的探究,分析某事件發生的各種可能性在全部可能發生結果中所占比例,得到用列舉法求概率的公式,引導學生進行理性思維,邏輯分析,既培養學生的分析問題能力,又讓學生明確用列舉法求概率這一簡便快捷方法的合理性。 P(A)= = = (m 3、舉例應用 、乓龑W生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學生掌握用列舉法求概率的方法。 ⑵引導學生對練習中的問題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。 深化發展 、旁O置3個小題目,引導學生歸納、分析、總結,加深對知識與方法的理解,并學會靈活運用。 、谱寣W生設計活動內容,對知識進行升華和拓展,引導學生創造性地運用知識思考問題和解決問題,從而培養學生的創新意識和創新能力。 各位評委老師你們好,我是第?號選手。我今天說課的題目是《 》,我將從教材分析,教法,學法,教學程序,等幾個方面進行我的說課。 一,教材分析 這部分我主要從3各方面闡述 1, 教材的地位和作用 《 》是北師大版必修?第?章第?節的內容,在此之前,同學們已經學習了、,這些對本節課的學習有一定的鋪墊作用,同是學好本節的內容不僅加深前面所學習的知識,而且為后面我們將要學習的?知識打好基礎,?所以說本節課的學習在整個高中數學學習過程中占有重要地位! 2.根據教學大綱的規定,教學內容的要求,教學對象的實情我確定了如下3維教學目標(i)知識目標: II能力目標;初步培養學生歸納,抽象,概括的思維能力。 訓練學生認識問題,分析問題,解決問題的能力 III情感目標;通過學生的探索,史學生體會數學就在我們身邊,讓學生發現生活的數學,培養不斷超越的創新品質,提高數學素養。 3, 結合以上分析以及高一學生的人知水平我確定啦本節課的重難點 教學重點: 教學難點; 二,教法 教學方法是完成教學任務的手段,恰當的學者教學方法至關重要,根據本節課的教學內容,考慮到高一學生已經初步具有一定的探索能力,并喜歡挑戰問題的實際情況,為啦更有效的突出重點,突破難點,按照學生的認知規律,遵循教師為主導,學生為主體,訓練為主線的知道思想。我主要采用 問題探究法 引導發現發,案例教學法,講授法,在教學過程中精心設計帶有啟發性和思考性的問題,滿足學生探索的欲望,培養學生的學習興趣,激發來自學生主體最有利的動力。并運用多媒體課件的形式,更形象直觀,提高教學效果的同時加大啦課堂密度! 學法 根據學生的年齡特征,運用訊息漸進,逐步升入,理論聯系實際的規律,讓學生從問題中質疑,嘗試,歸納,總結,運用。培養學生發現問題,研究問題,分析問題的能力。自主參與知識的發生,發展,形成過程,完成從感性認識 到理性思維的質的飛躍,史學生在知識和能力方面都有所提高。 三,教學程序 1, 創設情境,提出問題 讓學生產生強烈的問題意識,學生試著利用以前的知識經驗,同化索引出當前學習的新知識,激發學習的興趣和動機。 2, 引導探究,直奔主題。(揭示概念) 參用小組合作的方式,各小組派代表發表成果,教師作為教學的引導者,給予肯定的評價,并給出一定的指導,最后師生共同得出??!教師引導學生進一步學習。整個過程充分突出學生的主體地位,培養學生合作探究的能力,激發興趣,更讓學生在思考學術問題以及解決數學問題的思想方法上有更深的交流。 3, 自我嘗試,初步應用 在講解是,不僅在于怎樣接,更在于為什么這樣解,及時引導學生探究運用知識,解決問題的方法,及時對解題方法和規律進行概括,有利于培養學生的思維能力。 4 .當堂訓練,鞏固深化(反饋矯正) 通過學生的主體參與,讓學生鞏固所學的知識,實現對知識再認識的以及在數學解題思想方法層面上進一步升華 5,歸納小結,回顧反思 從知識,方法,經驗等方面進行總結。讓學生思考本節課學到啦那些知識,還有那些疑問。本節課最大的體驗。本節課你學會那些技能。 知識性的內容小結,可以把課堂教學傳授的知識盡快轉化為學生的素養,數學思想發放的小結,可以使學生更深刻地理解數學思想發放在解題中的地位和作用,并且逐步培養學生良好的個性品質目標。 ,6,變式延伸,布置作業 必做題,對本屆課學生知識水平的反饋。選作題,對本節課知識內容的延伸。使不同層次學生都可以收獲成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,讓每個學生在原有的基礎上有所發展。做到人人學數學,人人學不同的數學。 7板書設計 力圖簡潔,形象,直觀,概括以便學生易于掌握。 四,教學評價 學生學習結果評價當然重要,但是學習過程的評價更加重要。本節課中高度重視學生學習過程中的參與度,自信心,團隊精神,合作意識,獨立思考習慣的養成。數學發現的能力,以及學習的興趣和成就感,,學生熟悉的問題情境可以激發學生的學習興趣,問題串的設計可以讓更多學生主動參與,師生對話可以實現師生合作,適度的研討可以駐京生生交流,知識的生成和問題的解決可以讓學生感受到成功的喜悅?b密的思考可以培養學生獨立思考的習慣,讓學生在教室評價,學生評價以及自我評價的過程中體驗知識的積累,探索能力的長進和思維品質的提高,為學生的可持續發展打下基礎, 以上就是我的說課內容。不當之處,希望各位老師給予指正。謝謝各位評委老師!你們幸苦啦! 一、教學內容分析 圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象.恰當地利用定義解題,許多時候能以簡馭繁.因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。 二、學生學習情況分析 我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。 三、設計思想 由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情.在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率. 四、教學目標 1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。 2.通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。 3.借助多媒體輔助教學,激發學習數學的興趣. 五、教學重點與難點: 教學重點 1.對圓錐曲線定義的理解 2.利用圓錐曲線的定義求“最值” 3.“定義法”求軌跡方程 教學難點: 巧用圓錐曲線定義解題 六、教學過程設計 【設計思路】 (一)開門見山,提出問題 一上課,我就直截了當地給出—— 例題1:(1) 已知A(-2,0), B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是( )。 (A)橢圓 (B)雙曲線 (C)線段 (D)不存在 (2)已知動點 M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是( )。 (A)橢圓 (B)雙曲線 (C)拋物線 (D)兩條相交直線 【設計意圖】 定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節課首先要弄清楚的問題。 為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。 【學情預設】 估計多數學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折—— 如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2 5這樣,很快就能得出正確結果。如若不然,我將啟發他們從等式兩端的式子|3x4y|5 入手,考慮通過適當的變形,轉化為學生們熟知的兩個距離公式。 在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是 ,實軸長為 ,焦距為 。以深化對概念的理解。 (二)理解定義、解決問題 例2 (1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內切,求△ABC面積的最大值。 (2)在(1)的條件下,給定點P(-2,2), 求|PA| 七、教學反思 1.本課將借助于“XXX”,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結合的教學優勢。 2.利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法. 循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。 總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節奏仍是我今后工作中的一個重要研究課題.而要能真正進行素質教育,培養學生的創新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術,讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質,提高了數學思維能力。 開始:各位專家領導, 好! 今天我將要為大家講的課題是 首先,我對本節教材進行一些分析 一、教材結構與內容簡析 本節內容在全書及章節的地位:《 》是高中數學新教材第 冊( )第 章第 節。在此之前,學生已學習了 ,這為過渡到本節的學習起著鋪墊作用。本節內容是 部分,因此,在 中,占據 的地位。 數學思想方法分析:作為一名數學老師,不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想、數學意識,因此本節課在教學中力圖向學生: 二、 教學目標 根據上述教材結構與內容分析,考慮到學生已有的認知結構心理特征,制定如下教學目標: 1 基礎知識目標: 2 能力訓練目標: 3 創新素質目標: 4 個性品質目標: 三、 教學重點、難點、關鍵 本著課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點 重點: 通過 突出重點 難點: 通過 突破難點 關鍵: 下面,為了講清重點、難點,使學生能達到本節設定的教學目標,我再從教法和學法上談談: 四、 教法 數學是一門培養人的思維,發展人的思維的重要學科,因此,在教學中,不僅要使學生 “知其然”而且要使學生“知其所以然”, 我們在以師生既為主體,又為客體的原則下,展現獲取知識和方法的思維過程。基于本節課的特點: ,應著重采用 的教學方法。即: 五、 學法 我們常說:“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。 1、理論: 2、實踐: 3、能力: 最后我來具體談一談這一堂課的教學過程: 六、 教學程序及設想 1、由 引入: 把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實際情況下進行學習,可以使學生利用已有知識與經驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。 對于本題: 2、由實例得出本課新的知識點是: 3、講解例題。 我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于發展學生的思維能力。在題中: 4、能力訓練。 課后練習 使學生能鞏固羨慕自覺運用所學知識與解題思想方法。 5、總結結論,強化認識。 知識性內容的小結,可把課堂教學傳授的知識盡快化為學生的素質;數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐漸培養學生的良好的個性品質目標。 6、變式延伸,進行重構。 重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯、累積、加工,從而達到舉一反三的效果。 7、板書。 8、布置作業。 針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有佘力的學生有所提高,從而達到拔尖和“減負”的目的。 結束:說課是教師面對同行和其它聽眾口頭講述具體課題的教學設想及其根據的新的教學研究形式。以上,我僅從說教材,說學情,說教法,說學法,說教學程序上說明了“教什么”和“怎么教”,闡明了“為什么這樣教”。說課對我們大家仍是新事物,今后我也將進一步說好課,并希望各位專家領導對本堂說課提出寶貴意見。 注意時間掌握 六、注意靈活導入新知識點。 電腦課件 使用投影 根據時間進行增刪 一、說教材 1、 教材的地位和作用 《集合的概念》是人教版第一章的內容(中職數學)。本節課的主要內容:集合以及集合有關的概念,元素與集合間的關系。初中數學課本中已現了一些數和點的集合,如:自然數的集合、有理數的集合、不等式解的集合等,但學生并不清楚“集合”在數學中的含義,集合是一個基礎性的概念,也是也是中職數學的開篇,是我們后續學習的重要工具,如:用集合的語言表示函數的定義域、值域、方程與不等式的解集,曲線上點的集合等。通過本章節的學習,能讓學生領會到數學語言的簡潔和準確性,幫助學生學會用集合的語言描述客觀,發展學生運用數學語言交流的能力。 2、 教學目標 。1)知識目標:a、通過實例了解集合的含義,理解集合以及有關概念; b、初步體會元素與集合的“屬于”關系,掌握元素與集合關系的表示方法。 。2)能力目標:a、讓學生感知數學知識與實際生活得密切聯系,培養學生解決實際的能力; b、學會借助實例分析,探究數學問題,發展學生的觀察歸納能力。 。3)情感目標:a、通過聯系生活,提高學生學習數學的積極性,形成積極的學習態度; b、通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數學的理性和嚴謹。 3、重點和難點 重點:集合的概念,元素與集合的關系。 難點:準確理解集合的概念。 二、學情分析(說學情) 對于中職生來說,學生的數學基礎相對薄弱,他們還沒具備一定的觀察、分析理解、解決實際問題的能力,在運算能力、思維能力等方面參差不齊,學生學好數學的自信心不強,學習積極性不高,有厭學情緒。 三、說教法 針對學生的實際情況,采用探究式教學法進行教學。首先從學生較熟悉的實例出發,提高學生的注意力和激發學生的學習興趣。在創設情境認知策略上給予適當的點撥和引導,引導學生主動思、交流、討論,提出問題。在此基礎上教師層層深入,啟發學生積極思維,逐步提升學生的數學學習能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學生的理解和掌握。 四、學習指導(說學法) 教學的矛盾主要方面是學生的學,學是中心,會學是目的,因此在教學中要不斷指導學生學會學習。根據數學的特點這節課主要是教學生動腦思考、多訓練、勤鉆研的研討,這樣做增加了學生主動參與的機會,增強了參與的意識,教學生獲取知識的途徑,思考問題的方法,使學生成為教學的主體,進而才能達到預期的教學目的和效果。 五、教學過程 1、引入新課: a、創設情境,揭示本課主題,同時對集合的整體性有個初步的感性認識。 b、介紹集合論的創始者康托爾 2、究竟什么是集合?(實例探究)切合學生現有的認知水平, 以學生熟悉的事物(物體),以實際生活為背景進行探究, 為本課教學創造出一種自然和諧的氛圍,充分調動學生的學習熱情接待探究過程學生積極思考、交流、作答,教師針對學生的回答啟發,引導學生尋找實例中的共同特征,培養學生觀察,總結能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。 3、集合的概念,本課的重點。結合探究中的實例,讓學生說出集合和元素各是什么?知識的呈現由抽象到具體進一步熟悉元素與集合的概念,讓學生分清實際問題中的集合和元素為后面學習兩者間的關系做好鋪墊。 教師在這一環節做好學習指導,確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。 4、 熟悉鞏固集合的概念通過例題,練習、幫助學生進一步熟悉和理解集合的概念。 5、 集合的符號記法,為本節重點做好鋪墊。 6、 從實例入行手,探索元素和集合的關系,學生能用文字語言描述,如何用數學語言描述,給出元素與集合關系符號表示,在這個環節教師適當引導學生積極主動參與到知識逐步形成過程,便于學生理解和掌握,落實本課的重點,學習指導:⑴集合元素的確定。⑵理解兩符號的含義。 7、 思考交流本課的重要環節在課堂上給學生提供充分的活動時間和空間。通過自由舉例,能深化概念。同時還能提升學生的分析能力表達自己見解的能力。 8、 從所舉的例子中抽象出數集的概念,并給出常見數集的記法。 9、 學生練習:通過練習,識記常見數集的記法,同時進一步鞏固元素與集合間的關系。 10、知識的實際應用: 問題不難,落實課本能力目標,培養學生運用數學的意識和能力初步培養學生應用集合的眼光觀看世界。 11、課堂小節 以學生小節為主教師幫助為輔,鞏固所學知識,幫助學生認識到要學會梳理所學內容,要學會總結反思,使學生的認識進一步升華,培養學生的鬼納總結能力。 六、評價 教學評價的及時能有效調動課堂氣氛,感染學生的情緒,對課堂教學發揮著積極作用,教學過程遵重學生之間的差異培養學生應用集合的眼光看研究對象,注重過程評價與多元評價將教學評價貫穿于本堂課的每個教學環節。 七、教學反思 1、 通過現實生活中的實例,從特殊到一般,在具體感知基礎上得出集合的描述概念,便于學生理解接受。 2、 啟發探究教學,營造學生的學習氛圍,培養學生自主學習,合作交流的能力。 八、板書設計 各位老師: 大家好!我叫張西元。我說課的題目是《系統抽樣》,內容選自于蘇教版必修3第二章第一節,課時安排為一個課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析等五大方面來闡述我對這節課的分析和設計: 一、教材分析 1.教材所處的地位和作用 學生已初步了解掌握了簡單隨機抽樣的兩種方法,即抽簽法與隨機數表法,在此基礎上進一步學習系統抽樣,它也是“統計學”的重要組成部分,通過對系統抽樣的學習,更加突出統計在日常生活中的應用,體現它在中學數學中的地位。 2 教學的重點和難點 重點:正確理解系統抽樣的概念,能夠靈活應用系統抽樣的方法解決統計問題。難點:當 不是整數時的處理辦法,個體編號具有某種周期性時,“壞樣本”的理解。 二、教學目標分析 1.知識與技能目標: (1)正確理解系統抽樣的概念; (2)掌握系統抽樣的一般步驟; (3)正確理解系統抽樣與簡單隨機抽樣的關系; 2、過程與方法目標: 通過對實際問題的探究,歸納應用數學知識解決實際問題的方法,理解分類討論的數學方法高考資源 3、情感態度與價值觀目標: 通過數學活動,感受數學對實際生活的需要,體會現實世界和數學知識的聯系 三、教學方法與手段分析 1.教學方法:為了充分讓學生自己分析、判斷、自主學習、合作交流。因此,我采用討論發現法教學。 2.教學手段:通過各種教學媒體(計算機)調動學生參與課堂教學的主動性與積極性。 四、教學過程分析 (一)新課引入 1、復習提問: 。1)什么是簡單隨機抽樣?有哪兩種方法? 。2)抽簽法與隨機數表法的一般步驟是什么? 。3)簡單隨機抽樣應注意哪兩個原則? 。4)什么樣的總體適合簡單隨機抽樣?為什么? [設計意圖]通過復習提問進一步理解掌握簡單隨機抽樣的概念方法和步驟?為新課學習打基礎 2、實例探究 實例:某學校為了了解高一年級學生對教師教學的意見,打算從高一年級500名學生中抽取50名進行調查,除了用簡單隨機抽樣獲取樣本外,你能否設計其他抽取樣本的方法? 當總體數量較多時,應當如何抽?結合具體事例探究問題,設計你的抽取樣本的方法。抽取的樣本公平性與代表性如何?學生自主探究后小組討論回答。 [設計意圖]通過設置問題情境,讓學生參與問題解決的全過程,引導學生探究發現新知識新方法,完成從總體中抽取樣本,并發現“等距抽樣”的特性,從而形成感性的系統抽樣的概念與方法。這樣做既充分體現學生的主體地位和教師的主導作用,同時也較好地貫徹新課程所倡導“自主探究、合作交流”的學習方式。 。ǘ┬抡n講授 1、系統抽樣的概念方法步驟 。▽W生閱讀課本上的內容,教師引導學生總結歸納得出“系統抽樣”的概念,并點明課題) [設計意圖]經歷實例探究過程,學生對系統抽樣的概念方法步驟應有大致了解,輔以教師引導,從具體到一般,本節新課題的學習便水到渠成。 2、典型例題精析 例1、某校高中三年級的300名學生已經編號為1,2,……,300,為了了解學生的學習情況,要按10%的比例抽取一個樣本,請用系統抽樣的方法進行抽取,并寫出過程。 。ń處燁}意分析,引導學生應用新知識新方法,學生分析思考,探究解題,小組討論后口述解題過程) [設計意圖]實例鞏固,在得出新課的有關知識之后,再次讓學生在解決實際問題的過程中,進一步理解掌握系統抽樣的方法步驟,達到學以致用的技能,培養“學數學,用數學”的意識。 例2、某單位在職職工共624人,為了調查工人用于上班途中的時間,決定抽取10%的工人進行調查,試采用系統抽樣方法抽取所需的樣本。 [設計意圖]當 不是整數時,設置本題讓學生嘗試回答,并形成一般思路與方法。 (三) 練習鞏固 1、將全班學生按男女生交替排成一路縱隊,用擲骰的方法在前6名學生中任選一名,用 表示該名學生在隊列中的序號,將隊列中序號為 ,(k=1,2,3,…)的學生抽出作為樣本,這種抽樣方法叫做系統抽樣嗎?為什么?其樣本的代表性與公平性如何? 2、若按體重大小次序排成一路縱隊呢? [設計意圖]配合課本第60頁“邊空”問題:“請將這種抽樣方法與簡單隨機抽樣做一個比較,你認為系統抽樣能提高樣本的代表性嗎?為什么?”,幫助理解個體編號具有某種周期性時,樣本代表性較差的特點。同時分析系統抽樣的優點與缺點。 。ㄋ模┗仡櫺〗Y 1、師生共同回顧系統抽樣的概念方法與步驟 2、與簡單隨機抽樣比較,系統抽樣適合怎樣的總體情況? 3、當 不是整數時,一般步驟是什么?此時樣本的公平性與代表性如何? 。ㄎ澹┎贾米鳂I 課本第61頁的練習第1,2,3題 設計意圖:課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。 一.說教材 1.本節課主要內容是線性規劃的意義以及線性約束條件、線性目標函數、可行域、可行解、最優解等概念,根據約束條件建立線性目標函數。應用線性規劃的圖解法解決一些實際問題。 2.地位作用:線性規劃是數學規劃中理論較完整、方法較成熟、應用較廣泛的一個分支,它可以解決科學研究、工程設計、經濟管理等許多方面的實際問題。簡單的線性規劃是在學習了直線方程的基礎上,介紹直線方程的一個簡單應用。通過這部分內容的學習,使學生進一步了解數學在解決實際問題中的應用,以培養學生學習數學的興趣、應用數學的意識和解決實際問題的能力。 3.教學目標 (1)知識與技能:了解線性規劃的意義以及線性約束條件、線性目標函數、可行域、可行解、最優解等概念,能根據約束條件建立線性目標函數。 了解并初步應用線性規劃的圖解法解決一些實際問題。 (2)過程與方法:提高學生數學地提出、分析和解決問題的能力,發展學生數學應用意識,力求對現實世界中蘊含的一些數學模式進行思考和作出判斷。 (3)情感、態度與價值觀:體會數形結合、等價轉化等數學思想,逐步認識數學的應用價值,提高學習數學的興趣,樹立學好數學的自信心。 4.重點與難點 重點:理解和用好圖解法 難點:如何用圖解法尋找線性規劃的最優解。 二.說教學方法 教學過程是教師和學生共同參與的過程,啟發學生自主性學習,充分調動學生的積極性、主動性;有效地滲透數學思想方法,提高學生素質。根據這樣的原則和所要完成的教學目標,并為激發學生的學習興趣,我采用如下的教學方法: (1)啟發引導學生思考、分析、實驗、探索、歸納。這能充分調動學生的主動性和積極性。 (2)采用“從特殊到一般”、“化抽象為具體”、“化靜為動”的方法。這有利于學生對知識進行主動建構;有利于突出重點、解決難點;也有利于發揮學生的創造性。 (3)體現“等價轉化”、“數形結合”的思想方法。這樣可發揮學生的主觀能動性,有利于提高學生的各種能力。 三.說學法指導 教給學生方法比教給學生知識更重要,本節課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:觀察分析、聯想轉化、動手實驗、練習鞏固。 (1)觀察分析:通過引例讓學生觀察化舊知為新知,造成學生認知沖突。 (2)聯想轉化:學生通過分析、探索、得出解決問題的方法。 (3)動手實驗:通過作圖、實驗、從而得出一般解題步驟。 (4)練習鞏固:讓學生知道數學重在運用,從而檢驗知識的應用情況,找出未掌握的內容及其差距。 四.說教學程序 1、導入課題: 由一個不等式組表示平面區域轉化為在此平面區域內一二元一次數的最值問題,造成學生認知沖突。 3、導學達標之一:創設情境、形成概念 通過引例的問題讓學生探索解決新問題的方法。 (設計意圖:利用已經學過的知識逐步分析,學以致用,使學生經歷數學知識的形成過程,從而提高學生數學的地提出、分析和解決問題的能力。) 然后老師逐步引導,動手實驗,化抽象為直觀。從而得到解決此類問題的方法,并對比引例給出相關概念:線性約束條件、目標函數、線性目標函數、線性規劃、可行解、可行域、最優解。并能根據引例提煉線性規劃問題的解法——圖解法。 (設計意圖:引導學生觀察和分析問題,激發學生的探索欲望,從而培養學生的解決問題和總結歸納的能力。) 4.導學達標之二:針對問題、舉例講解、形成技能 例一:課本61頁例3 (創設意境:,練習是使學生明白數學來源于實際又運用于實際,同時使學生進初步應用線性規劃的圖解法解決一些實際問題。) 6.鞏固目標: 練習一:學生做課堂練習P64例4 (叫學生提出解決問題的方法,并用多媒體展示,并根據問題的實際意義,考慮取值范圍。造成新的認知沖突,從而研究探索,得到整點最優解的一種求法。) 練習二:為了賺大錢,老張最近承包了一家具廠,可老張卻悶悶不樂,原來家具廠有方木料90m3,五合板600m2,老張準備加工成書桌和書廚出售,他通過調查了解到:生產每張書桌需要方木料0.1m3、五合板2m2,生產每個書櫥需要方木料0.2m3、五合板1m2,出售一張書桌可獲利潤80元,出售一個書櫥可獲利潤120元。老張卻不知如何安排?(電腦顯示問題) (設計意圖:通過實際問題,激發學生興趣,培養學生的數學應用意識,力求學生能夠對現實生活中蘊含的一些數學模式進行思考和作出判斷。) 7.歸納與小結: 小結本課的主要學習內容是什么?(由師生共同來完成本課小結) (創設意境:讓學生參與小結,引導學生對所學知識進行反思,有利于加強學生記憶和形成良好的數學思維習慣) 8.布置作業: P64. 2 五.說板書設計 板書設計為表格式,這樣的板書簡明清楚,重點突出,加深學生對重點知識的理解和掌握,同時便于記憶,有利于提高教學效果。 【有關高中數學說課稿范文匯編9篇】相關文章: 有關高中數學說課稿范文匯編8篇08-11 有關高中數學說課稿范文匯編五篇08-08 有關高中數學說課稿范文匯編七篇08-20 有關高中數學說課稿范文匯編十篇08-19 有關高中數學說課稿范文5篇07-23 有關高中數學說課稿模板匯編五篇07-30 有關高中數學說課稿模板匯編八篇07-02 高中數學經典說課稿范文06-24 有關高中數學說課稿范文合集9篇08-01高中數學說課稿 篇3
高中數學說課稿 篇4
高中數學說課稿 篇5
高中數學說課稿 篇6
高中數學說課稿 篇7
高中數學說課稿 篇8
高中數學說課稿 篇9