實用的高中數學說課稿范文集合9篇
作為一無名無私奉獻的教育工作者,往往需要進行說課稿編寫工作,認真擬定說課稿,怎樣寫說課稿才更能起到其作用呢?以下是小編為大家收集的高中數學說課稿9篇,希望能夠幫助到大家。
高中數學說課稿 篇1
高中數學第三冊(選修)Ⅱ第一章第2節第一課時
一、教材分析
教材的地位和作用
期望是概率論和數理統計的重要概念之一,是反映隨機變量取值分布的特征數,學習期望將為今后學習概率統計知識做鋪墊。同時,它在市場預測,經濟統計,風險與決策等領域有著廣泛的應用,為今后學習數學及相關學科產生深遠的影響。
教學重點與難點
重點:離散型隨機變量期望的概念及其實際含義。
難點:離散型隨機變量期望的實際應用。
[理論依據]本課是一節概念新授課,而概念本身具有一定的抽象性,學生難以理解,因此把對離散性隨機變量期望的概念的教學作為本節課的教學重點。此外,學生初次應用概念解決實際問題也較為困難,故把其作為本節課的教學難點。
二、教學目標
[知識與技能目標]
通過實例,讓學生理解離散型隨機變量期望的概念,了解其實際含義。
會計算簡單的離散型隨機變量的期望,并解決一些實際問題。
[過程與方法目標]
經歷概念的建構這一過程,讓學生進一步體會從特殊到一般的思想,培養學生歸納、概括等合情推理能力。
通過實際應用,培養學生把實際問題抽象成數學問題的能力和學以致用的數學應用意識。
[情感與態度目標]
通過創設情境激發學生學習數學的情感,培養其嚴謹治學的態度。在學生分析問題、解決問題的過程中培養其積極探索的精神,從而實現自我的價值。
三、教法選擇
引導發現法
四、學法指導
“授之以魚,不如授之以漁”,注重發揮學生的主體性,讓學生在學習中學會怎樣發現問題、分析問題、解決問題。
五、教學的基本流程設計
高中數學第三冊《離散型隨機變量的期望》說課教案.rar
高中數學說課稿 篇2
一、教材分析
1.《指數函數》在教材中的地位、作用和特點
《指數函數》是人教版高中數學(必修)第一冊第二章“函數”的第六節內容,是在學習了《指數》一節內容之后編排的。通過本節課的學習,既可以對指數和函數的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數、對數函數尤其是利用互為反函數的圖象間的關系來研究對數函數的性質打下堅實的概念和圖象基礎,又因為《指數函數》是進入高中以后學生遇到的第一個系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學習基礎,所以《指數函數》不僅是本章《函數》的重點內容,也是高中學段的主要研究內容之一,有著不可替代的重要作用。
此外,《指數函數》的知識與我們的日常生產、生活和科學研究有著緊密的聯系,尤其體現在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現實意義。本節內容的特點之一是概念性強,特點之二是凸顯了數學圖形在研究函數性質時的重要作用。
2.教學目標、重點和難點
通過初中學段的學習和高中對集合、函數等知識的系統學習,學生對函數和圖象的關系已經構建了一定的認知結構,主要體現在三個方面:
知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡單的函數概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數初步轉化到從集合與對應的觀點來認識函數。
技能維度:學生對采用“描點法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質做好準備。
素質維度:由觀察到抽象的數學活動過程已有一定的體會,已初步了解了數形結合的思想。
鑒于對學生已有的知識基礎和認知能力的分析,根據《教學大綱》的要求,我確定本節課的教學目標、教學重點和難點如下:
(1)知識目標:
、僬莆罩笖岛瘮档母拍;
②掌握指數函數的圖象和性質;
、勰艹醪嚼弥笖岛瘮档母拍罱鉀Q實際問題;
(2)技能目標:
、贊B透數形結合的基本數學思想方法
②培養學生觀察、聯想、類比、猜測、歸納的能力;
(3)情感目標:
、袤w驗從特殊到一般的學習規律,認識事物之間的普遍聯系與相互轉化,培養學生用聯系的觀點看問題②通過教學互動促進師生情感,激發學生的學習興趣,提高學生抽象、概括、分析、綜合的能力
、垲I會數學科學的應用價值。
(4)教學重點:指數函數的圖象和性質。
(5)教學難點:指數函數的圖象性質與底數a的關系。
突破難點的關鍵:尋找新知生長點,建立新舊知識的聯系,在理解概念的基礎上充分結合圖象,利用數形結合來掃清障礙。
二、教法設計
由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過這一節課的教學達到不僅使學生初步理解并能簡單應用指數函數的知識,更期望能引領學生掌握研究初等函數圖象性質的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學生學習能力的目的,我根據自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:
1.創設問題情景.按照指數函數的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。
2.強化“指數函數”概念.引導學生結合指數的有關概念來歸納出指數函數的定義,并向學生指出指數函數的形式特點,請學生思考對于底數a是否需要限制,如不限制會有什么問題出現,這樣避免了學生對于底數a范圍分類的不清楚,也為研究指數函數的圖象做了“分類討論”的鋪墊。
3.突出圖象的作用.在數學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數學家曾經說過“數離形時少直觀,形離數時難入微”,而在研究指數函數的性質時,更是直接由圖象觀察得出性質,因此圖象發揮了主要的作用。
4.注意數學與生活和實踐的聯系.數學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關的生活問題,力圖使學生了解到數學的基礎學科作用,培養學生的數學應用意識。
三、學法指導
本節課是在學習完“指數”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:
1.再現原有認知結構。在引入兩個生活實例后,請學生回憶有關指數的概念,幫助學生再現原有認知結構,為理解指數函數的概念做好準備。
2.領會常見數學思想方法。在借助圖象研究指數函數的性質時會遇到分類討論、數形結合等基本數學思想方法,這些方法將會貫穿整個高中的數學學習。
3.在互相交流和自主探究中獲得發展。在生活實例的課堂導入、指數函數的性質研究、例題與訓練、課內小節等教學環節中都安排了學生的討論、分組、交流等活動,讓學生變被動的接受和記憶知識為在合作學習的樂趣中主動地建構新知識的框架和體系,從而完成知識的內化過程。
4.注意學習過程的循序漸進。在概念、圖象、性質、應用、拓展的過程中按照先易后難的順序層層遞進,讓學生感到有挑戰、有收獲,跳一跳,夠得著,不同難度的題目設計將盡可能照顧到課堂學生的個體差異。
四、程序設計
在設計本節課的教學過程中,本著遵循學生的認知規律、讓學生去經歷知識的形成與發展過程的原則,我設計了如下的教學程序,啟發學生逐步發現和認識指數函數的圖象和性質。
1.創設情景、導入新課
教師活動:
、儆秒娔X展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞分裂的例子,
、趯W生按奇數列、偶數列分組。
學生活動:
、俜謩e寫出計算機價格y與經過月份x的關系式和細胞個數y與分裂次數x的關系式,并互相交流;
②回憶指數的概念;
、蹥w納指數函數的概念;
、芊治龀鰧χ笖岛瘮档讛涤懻摰谋匾砸约胺诸惖姆椒。
設計意圖:通過生活實例激發學生的學習動機,,掃清由概念不清而造成的知識障礙,培養學生思維的主動性, 為突破難點做好準備;
2.啟發誘導、探求新知
教師活動:
、俳o出兩個簡單的指數函數并要求學生畫它們的圖象②在準備好的小黑板上規范地畫出這兩個指數函數的圖象③板書指數函數的性質。
學生活動:
①畫出兩個簡單的指數函數圖象
、诮涣、討論
、蹥w納出研究函數性質涉及的方面
④總結出指數函數的性質。
設計意圖:讓學生動手作簡單的指數函數的圖象對深刻理解本節課的內容有著一定的促進作用,在學生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進一步規范學生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情況,學生就會很自然的通過觀察圖象總結出指數函數的性質,同時對于底數的討論也就變得順理成章。
3.鞏固新知、反饋回授
教師活動:
、侔鍟1
、诎鍟2第一問
、劢榻B有關考古的拓展知識。
高中數學說課稿 篇3
各位老師:
今天我說課的題目是《輸入、輸出語句和賦值語句》,內容選自于新課程人教A版必修3第一章第二節,課時安排為一個課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析等四大方面來闡述我對這節課的分析和設計:
一、教材分析
1.教材所處的地位和作用
我們用自然語言或程序框圖描述的算法,但是計算機是無法“看得懂,聽得見”的。因此還需要將算法用計算機能夠理解的程序設計語言翻譯成計算機程序。程序設計語言有很多種。為了實現算法中的三種基本的邏輯結構:順序結構、條件結構和循環結構,各種程序設計語言中都包含下列基本的算法語句:輸入語句、輸出語句、賦值語句、條件語句和循環語句.。而我們今天所要學習的是前三種算法語句,它們基本上是對應于算法中的順序結構的。
2.教學的重點和難點
重點:正確理解輸入語句、輸出語句、賦值語句的作用。
難點:準確寫出輸入語句、輸出語句、賦值語句。
二、教學目標分析
1.知識與技能目標:
。1)正確理解輸入語句、輸出語句、賦值語句的結構。
。2)會寫一些簡單的程序。
。3)掌握賦值語句中的“=”的作用。
2.過程與方法目標:
(1)讓學生充分地感知、體驗應用計算機解決數學問題的方法;并能初步操作、模仿。
。2)通過模仿,操作,探索的過程,體會算法的基本思想和基本語句的用途,提高學生應用數學軟件的能力.
3.情感,態度和價值觀目標
(1) 通過對三種語句的了解和實現,發展有條理的思考,表達的能力,提高邏輯思維能力.
(2) 學習算法語句,幫助學生利用計算機軟件實現算法,活躍思維,提高學生的數學素養.
(3) 結合計算機軟件的應用, 增強應用數學的意識,在計算機上實現算法讓學生體會成功喜悅.
三、教學方法與手段分析
1.教學方法:引導與合作交流相結合,學生在體會三種語句結構格式的過程中,讓學生積極參與,討論交流,充分挖掘三種算法語句的格式特點及意義,在分析具體問題的過程中總結三種算法語句的思想與特征.
2.教學手段:運用計算機、圖形計算器輔助教學
四、教學過程分析
1. 創設情境(約5分鐘)
在課的開始,我要求學生們舉出一些在日常生活中所應用到的有關計算機的例子,如:聽MP3,看電影,玩游戲,打字排版,畫卡通畫,處理數據等等,并告訴他們在現代社會里,計算機已經成為人們日常生活和工作不可缺少的工具,然后接著問他們知不知道計算機到底是怎樣工作的?通過這個問題引出我們今天所要學習的內容。(板出課題)
在這個過程中,我讓學生們將課本學習的內容與現實生活聯系在了一起,這樣能夠激起他們對接下來的所要學習內容的興趣,為整節課的學習打下一個良好的基礎。
2.探究新知(約15分鐘)
這里我先給出一個題目:用描點法作出函數
的圖象,用描點法作函數的圖象時,需要先求出自變量與函數的對應值。編寫程序,分別計算當
時的函數值。(程序由我在課前準備好,教學中直接調用運行)
程序:INPUT“x=”;x 輸入語句
y=x^3+3*x^2-24*x+30 賦值語句
PRINT x 輸出語句
PRINT y 輸出語句
END
(學生們先看,再跟著做,先不必深究該程序如何得來,只要模仿編寫程序,通過運行自己編寫的程序發現問題所在,進一步提高學生的模仿能力)
之后,我向學生們提問:在這個程序中,他們覺得哪些是輸入語句、輸出語句和賦值語句?(同學們互相交流、議論、猜想、概括出結論。提示:“input”和“print”的中文意思,還要請學生們注意到在賦值語句中的賦值號“=”與數學中的等號意義不同。)
此過程由老師引導,學生們自己討論并總結出什么是輸入語句、輸出語句和賦值語句,這樣比老師直接地將知識傳授給他們,學習的效果更佳,同時也鍛煉了學生們思考問題的能力和概括能力,激發學習興趣。
然后給出一個思考題:在1.1.2中程序框圖中的輸入框,輸出框的內容怎樣用輸入語句、輸出語句來表達?(學生討論、交流想法,然后請學生作答)這樣可以及時應用剛剛學習的內容,并可以將前后所學知識聯系起來。
3.例題精析(約12分鐘)
在本環節中我為學生們準備了三道例題,這三道例題均選自課本的例2、例3和例4,學生通過這幾道例題的講解,結合計算機程序上機運用,可以掌握在程序設計語言中的前三種算法語句,體會到他們在程序中的意義和作用。
4.課堂精練(約4分鐘)
P15 練習 1.
提問:如果要求輸入一個攝氏溫度,輸出其相應的華氏溫度,又該如何設計程序?(學生課后思考,討論完成)通過提問啟發學生們思考,發散思維。
5.課堂小結(約5分鐘)
、泡斎胝Z句、輸出語句和賦值語句的結構特點及聯系
、茟幂斎胝Z句,輸出語句,賦值語句編寫一些簡單的程序解決數學問題
、 賦值語句中“=”的作用及應用
⑷編程一般的步驟:先寫出算法,再進行編程。
6.布置作業
P23 習題1.2 A組 1(2)、2
[設計意圖]課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。
7.板書設計
高中數學說課稿 篇4
【一】教學背景分析
1.教材結構分析
《圓的方程》安排在高中數學第二冊(上)第七章第六節.圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用.圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用.
2.學情分析
圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的.但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難.另外學生在探究問題的能力,合作交流的意識等方面有待加強.
根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:
3.教學目標
(1) 知識目標:①掌握圓的標準方程;
、跁蓤A的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程;
、劾脠A的標準方程解決簡單的實際問題.
(2) 能力目標:①進一步培養學生用代數方法研究幾何問題的能力;
、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用;
、墼鰪妼W生用數學的意識.
(3) 情感目標:①培養學生主動探究知識、合作交流的意識;
、谠隗w驗數學美的過程中激發學生的學習興趣.
根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:
4. 教學重點與難點
(1)重點:圓的標準方程的求法及其應用.
(2)難點: ①會根據不同的已知條件求圓的標準方程;
、谶x擇恰當的坐標系解決與圓有關的實際問題.
為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析:
好學教育:
【二】教法學法分析
1.教法分析 為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上.另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程.
2.學法分析 通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解.通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓.通過應用圓的標準方程,熟悉用待定系數法求的過程. 下面我就對具體的教學過程和設計加以說明:
【三】教學過程與設計
整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節:
創設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高
反饋訓練 形成方法 小結反思 拓展引申
下面我從縱橫兩方面敘述我的教學程序與設計意圖.
首先:縱向敘述教學過程
(一)創設情境——啟迪思維
問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?
通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決.一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題.用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望.這樣獲取的知識,不但易于保持,而且易于遷移.
通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節.
(二)深入探究——獲得新知
問題二 1.根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
2.如果圓心在,半徑為時又如何呢?
好學教育:
這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程.然后再讓學生對圓心不在原點的情況進行探究.我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法.
得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節.
(三)應用舉例——鞏固提高
I.直接應用 內化新知
問題三 1.寫出下列各圓的標準方程:
(1)圓心在原點,半徑為3;
(2)經過點,圓心在點.
2.寫出圓的圓心坐標和半徑.
我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備.
II.靈活應用 提升能力
問題四 1.求以點為圓心,并且和直線相切的圓的方程.
2.求過點,圓心在直線上且與軸相切的圓的方程.
3.已知圓的方程為,求過圓上一點的切線方程.
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經過圓上一點的切線的方程是什么?
我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程.第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓.第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間.最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮.
III.實際應用 回歸自然
問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m).
好學教育:
我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識.
(四)反饋訓練——形成方法
問題六 1.求過原點和點,且圓心在直線上的圓的標準方程.
2.求圓過點的切線方程.
3.求圓過點的切線方程.
接下來是第四環節——反饋訓練.這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的.樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心.另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果.
(五)小結反思——拓展引申
1.課堂小結
把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r 的圓的標準方程為:
圓心在原點時,半徑為r 的圓的標準方程為:.
、谝阎獔A的方程是,經過圓上一點的切線的方程是:.
2.分層作業
(A)鞏固型作業:教材P81-82:(習題7.6)1,2,4.(B)思維拓展型作業:試推導過圓上一點的切線方程.
3.激發新疑
問題七 1.把圓的標準方程展開后是什么形式?
2.方程表示什么圖形?
在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了.在知識的拓展中再次掀起學生探究的熱情.另外它為下節課研究圓的一般方程作了重要的準備.
以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計: 橫向闡述教學設計
(一)突出重點 抓住關鍵 突破難點
好學教育:
求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的同時突破了難點.
第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心.最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五.這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破.
(二)學生主體 教師主導 探究主線
本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終.從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的.另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務.
(三)培養思維 提升能力 激勵創新
為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力.在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行.
以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變.最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”.
高中數學說課稿 篇5
一、教材分析
1、教材的地位和作用:
函數是高中數學學習的重點和難點,函數的思想貫穿于整個高中數學之中。本節課是學生在已掌握了函數的一般性質和簡單的指數運算的基礎上,進一步研究指數函數及指數函數的圖像和性質,同時也為今后研究對數函數及其性質打下堅實的基礎。因此本節課內容十分重要,它對知識起著承上啟下的作用。
2、教學的重點和難點:
根據這節課的內容特點及學生的實際情況,我將本節課教學重點定為指數函數的圖像、性質及應用,難點定為指數函數性質的發現過程及指數函數與底的關系。
二、教學目標分析
基于對教材的理解和分析,我制定了以下教學目標:
1、理解指數函數的定義,掌握指數函數圖像、性質及其簡單應用。
2、通過教學培養學生觀察、分析、歸納等思維能力,體會數形結合思想和分類討論思想,增強學生識圖用圖的能力。
3、培養學生對知識的嚴謹科學態度和辯證唯物主義觀點。
三、教法學法分析
1、學情分析
教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也逐步形成,但由于年齡的原因,思維盡管活躍敏捷,卻缺乏冷靜深刻。因此思考問題片面不嚴謹。
2、教法分析:基于以上學情分析,我采用先學生討論,再教師講授教學方法。一方面培養學生的觀察、分析、歸納等思維能力。另一方面用教師的講授來糾正由于學生思維過分活躍而走入的誤區,和彌補知識的不足,達到能力與知識的雙重效果。
3、學法分析
讓學生仔細觀察書中給出的實際例子,使他們發現指數函數與現實生活息息相關。再根據高一學生愛動腦懶動手的特點,讓學生自己描點畫圖,畫出指數函數的圖像,繼而用自己的語言總結指數函數的性質,學生經歷了探究的過程,培養探究能力和抽象概括的能力。
四、教學過程
(一)創設情景
問題1:某種細胞分裂時,由1個分裂成2個,2個分裂成4個,……一個這樣的細胞分裂 次后,得到的細胞分裂的個數 與 之間,構成一個函數關系,能寫出 與 之間的函數關系式嗎?
學生回答: 與 之間的關系式,可以表示為 。
問題2:折紙問題:讓學生動手折紙
學生回答:①對折的次數 與所得的層數 之間的關系,得出結論
②對折的次數 與折后面積 之間的關系(記折前紙張面積為1),得出結論
問題3:《莊子。天下篇》中寫到“一尺之棰,日取其半,萬世不竭”。
學生回答:寫出取 次后,木棰的剩留量與 與 的函數關系式。
設計意圖:
(1)讓學生在問題的情景中發現問題,遇到挑戰,激發斗志,又引導學生在簡單的具體問題中抽象出共性,體驗從簡單到復雜,從特殊到一般的認知規律。從而引入兩種常見的指數函數① ②
(2)讓學生感受我們生活中存在這樣的指數函數模型,便于學生接
受指數函數的形式。
(二)導入新課
引導學生觀察,三個函數中,底數是常數,指數是自變量。
設計意圖:充實實例,突出底數a的取值范圍,讓學生體會到數學來源于生產生活實際。函數 分別以 的數為底,加深對定義的感性認識,為順利引出指數函數定義作鋪墊。
(三)新課講授
1.指數函數的定義
一般地,函數 叫做指數函數,其中 是自變量,函數的定義域是R。
含義:
設計意圖:為 按兩種情況得出指數函數性質作鋪墊。若學生回答不合適,引導學生用區間表示:
問題:指數函數定義中,為什么規定“ ”如果不這樣規定會出現什么情況?
設計意圖:教師首先提出問題:為什么要規定底數大于0且不等于1呢?這是本節的一個難點,為突破難點,采取學生自由討論的形式,達到互相啟發,補充,活躍氣氛,激發興趣的目的。
對于底數的分類,可將問題分解為:
(1)若 會有什么問題?(如 ,則在實數范圍內相應的函數值不存在)
(2)若 會有什么問題?(對于 , 都無意義)
(3)若 又會怎么樣?( 無論 取何值,它總是1,對它沒有研究的必要.)
師:為了避免上述各種情況的發生,所以規定 。
在這里要注意生生之間、師生之間的對話。
設計意圖:認識清楚底數a的特殊規定,才能深刻理解指數函數的定義域是R;并為學習對數函數,認識指數與對數函數關系打基礎。
教師還要提醒學生指數函數的定義是形式定義,必須在形式上一模一樣才行,然后把問題引向深入。
1:指出下列函數那些是指數函數:
2:若函數 是指數函數,則
3:已知 是指數函數,且 ,求函數 的解析式。
設計意圖 :加深學生對指數函數定義和呈現形式的理解。
2.指數函數的圖像及性質
在同一平面直角坐標系內畫出下列指數函數的圖象
畫函數圖象的步驟:列表、描點、連線
思考如何列表取值?
教師與學生共同作出 圖像。
設計意圖:在理解指數函數定義的基礎上掌握指數函數的圖像與性質,是本節的重點。關鍵在于弄清底數a對于函數值變化的影響。對于 時函數值變化的不同情況,學生往往容易混淆,這是教學中的一個難點。為此,必須利用圖像,數形結合。教師親自板演,學生親自在課前準備好的坐標系里畫圖,而不是采用幾何畫板直接得到圖像,目的是使學生更加信服,加深印象,并為以后畫圖解題,采用數形結合思想方法打下基礎。
利用幾何畫板演示函數 的圖象,觀察分析圖像的共同特征。由特殊到一般,得出指數函數 的圖象特征,進一步得出圖象性質:
教師組織學生結合圖像討論指數函數的性質。
設計意圖:這是本節課的重點和難點,要充分調動學生的積極性、主動性,發揮他們的潛能,盡量由學生自主得出性質,以便能夠更深刻的記憶、更熟練的運用。
師生共同總結指數函數的性質,教師邊總結邊板書。
特別地,函數值的分布情況如下:
設計意圖:再次強調指數函數的單調性與底數a的關系,并具體分析了函數值的分布情況,深刻理解指數函數值域情況。
(四)鞏固與練習
例1: 比較下列各題中兩值的大小
教師引導學生觀察這些指數值的特征,思考比較大小的方法。
(1)(2)兩題底相同,指數不同,(3)(4)兩題可化為同底的,可以利用函數的單調性比較大小。
(5)題底不同,指數相同,可以利用函數的圖像比較大小。
(6)題底不同,指數也不同,可以借助中介值比較大小。
例2:已知下列不等式 , 比較 的大小 :
設計意圖:這是指數函數性質的簡單應用,使學生在解題過程中加深對指數函數的圖像及性質的理解和記憶。
(五)課堂小結
通過本節課的學習,你學到了哪些知識?
你又掌握了哪些數學思想方法?
你能將指數函數的學習與實際生活聯系起來嗎?
設計意圖:讓學生在小結中明確本節課的學習內容,強化本節課的學習重點,并為后續學習打下基礎。
(六)布置作業
1、練習B組第2題;習題3-1A組第3題
2、A先生從今天開始每天給你10萬元,而你承擔如下任務:第一天給A先生1元,第二天給A先生2元,,第三天給A先生4元,第四天給A先生8元,依次下去,…,A先生要和你簽定15天的合同,你同意嗎?又A先生要和你簽定30天的合同,你能簽這個合同嗎?
3、觀察指數函數 的圖象,比較 的大小。
高中數學說課稿 篇6
一、說教材
1.從在教材中的地位與作用來看
《等比數列的前n項和》是數列這一章中的一個重要內容,它不僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數學素養.
2.從學生認知角度看
從學生的思維特點看,很容易把本節內容與等差數列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導.不利因素是:本節公式的推導與等差數列前n項和公式的推導有著本質的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯.
3.學情分析
教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹.
4.重點、難點
教學重點:公式的推導、公式的特點和公式的運用.
教學難點:公式的推導方法和公式的靈活運用.
公式推導所使用的“錯位相減法”是高中數學數列求和方法中最常用的方法之一,它蘊含了重要的數學思想,所以既是重點也是難點.
二、說目標
知識與技能目標:
理解并掌握等比數列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關的問題.
過程與方法目標:
通過對公式推導方法的探索與發現,向學生滲透特殊到一般、類比與轉化、分類討論等數學思想,培養學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.
情感與態度價值觀:
通過對公式推導方法的探索與發現,優化學生的思維品質,滲透事物之間等價轉化和理論聯系實際的辯證唯物主義觀點.
三、說過程
學生是認知的主體,設計教學過程必須遵循學生的認知規律,盡可能地讓學生去經歷知識的形成與發展過程,結合本節課的特點,我設計了如下的教學過程:
1.創設情境,提出問題
在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求.西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數學家計算,結果出來后,國王大吃一驚.為什么呢?
設計意圖:設計這個情境目的是在引入課題的同時激發學生的興趣,調動學習的積極性.故事內容緊扣本節課的主題與重點.
此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥?倲.帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和.這時我對他們的這種思路給予肯定.
設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關鍵處學生難以轉過彎來,因而在教學中應舍得花時間營造知識形成過程的氛圍,突破學生學習的障礙.同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆.
2.師生互動,探究問題
在肯定他們的思路后,我接著問:1,2,22,…,263是什么數列?有何特征?應歸結為什么數學問題呢?
探討1:,記為(1)式,注意觀察每一項的特征,有何聯系?(學生會發現,后一項都是前一項的2倍)
探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發現?
設計意圖:留出時間讓學生充分地比較,等比數列前n項和的公式推導關鍵是變“加”為“減”,在教師看來這是“天經地義”的,但在學生看來卻是“不可思議”的,因此教學中應著力在這兒做文章,從而抓住培養學生的辯證思維能力的良好契機.
經過比較、研究,學生發現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:.老師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?
設計意圖:經過繁難的計算之苦后,突然發現上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數學的興趣和學好數學的信心.
3.類比聯想,解決問題
這時我再順勢引導學生將結論一般化,
這里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導.
設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感.
對不對?這里的q能不能等于1?等比數列中的公比能不能為1?q=1時是什么數列?此時sn=?(這里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎.)
再次追問:結合等比數列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導學生得出公式的另一形式)
設計意圖:通過反問精講,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和接受,變為對知識的主動認識,從而進一步提高分析、類比和綜合的能力.這一環節非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用.
4.討論交流,延伸拓展
高中數學說課稿 篇7
一、教材分析
。ㄒ唬┑匚慌c作用
《冪函數》選自高一數學新教材必修1第2章第3節。是基本初等函數之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。從教材的整體安排看,學習了解冪函數是為了讓學生進一步獲得比較系統的函數知識和研究函數的方法,為今后學習三角函數等其他函數打下良好的基礎.在初中曾經研究過y=x,y=x2,y=x—1三種冪函數。這節內容,是對初中有關內容的進一步的概括、歸納與發展,是與冪有關知識的高度升華.本節內容之后, 將把指數函數,對數函數,冪函數科學的組織起來,體現充滿在整個數學中的組織化,系統化的精神。讓學生了解系統研究一類函數的方法.這節課要特別讓學生去體會研究的方法,以便能將該方法遷移到對其他函數的研究.
。ǘ⿲W情分析
(1)學生已經接觸的函數,確立利用函數的定義域、值域、奇偶性、單調性研究一個函數的意識 ,已初步形成對數學問題的合作探究能力。
(2)雖然前面學生已經學會用描點畫圖的方法來繪制指數函數,對數函數圖像,但是對于冪函數的圖像畫法仍然缺乏感性認識。
(3)學生層次參差不齊,個體差異比較明顯。
二、目標分析
新課標指出“三維目標”是一個密切聯系的有機整體。
。ㄒ唬┙虒W目標
(1)知識與技能
、偈箤W生理解冪函數的概念,會畫冪函數的圖象。
、谧寣W生結合這幾個冪函數的圖象,理解冪函圖象的變化情況和性質。
。2)過程與方法
、僮寣W生通過觀察、總結冪函數的性質,培養學生概括抽象和識圖能力。
、谑箤W生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。
(3)情感態度與價值觀
、偻ㄟ^熟悉的例子讓學生消除對冪函數的陌生感從而引出概念,引起學生注意,激發學生的學習興趣。
②利用多媒體,了解冪函數圖象的變化規律,使學生認識到現代技術在數學認知過程中的作用,從而激發學生的學習欲望。
、叟囵B學生從特殊歸納出一般的意識,培養學生利用圖像研究函數奇偶性的能力。并引導學生發現數學中的對稱美,讓學生在畫圖與識圖中獲得學習的快樂。
。ǘ┲攸c難點
根據我對本節課的內容的理解,我將重難點定為:
重點:從五個具體的冪函數中認識概念和性質
難點:從冪函數的圖象中概括其性質。
三、教法、學法分析
。ㄒ唬┙谭
教學過程是教師和學生共同參與的過程,教師要善于啟發學生自主性學習,充分調動學生的積極性、主動性,要有效地滲透數學思想方法,努力去提高學生素質。根據這樣的原則和所要完成的教學目標,并為激發學生的學習興趣,我采用如下的教學方法。
1、引導發現比較法
因為有五個冪函數,所以可先通過學生動手畫出函數的圖象,觀察它們的解析式和圖象并從式的角度和形的角度發現異同,并進行比較,從而更深刻地領會冪函數概念以及五個冪函數的圖象與性質。
2、借助信息技術輔助教學
由于多媒體信息技術能具有形象生動易吸引學生注意的特點,故此,可用多媒體制作引入情境,將學生引到這節課的學習中來。再利用《幾何畫板》畫出五個冪函數的圖象,為學生創設豐富的數形結合環境,幫助學生更深刻地理解冪函數概念以及在冪函數中指數的變化對函數圖象形狀和單調性的影響,并由此歸納冪函數的性質。
3、練習鞏固討論學習法
這樣更能突出重點,解決難點,使學生既能夠進行深入地獨立思考又能與同學進行廣泛的交流與合作,這樣一來學生對這五個冪函數領會得會更加深刻,在這個過程中學生們分析問題和解決問題的能力得到進一步的提高,班級整體學習氛氛圍也變得更加濃厚。
。ǘ⿲W法
本節課主要是通過對冪函數模型的特征進行歸納,動手探索冪函數的圖像,觀察發現其有關性質,再改變觀察角度發現奇偶函數的特征。重在動手操作、觀察發現和歸納的過程。
由于冪函數在第一象限的特征是學生不容易發現的問題,因此在教學過程中引導學生將抽象問題具體化,借助多媒體進行動態演化,以形成較完整的知識結構。
四、教學過程分析
(一)教學過程設計
。1)創設情境,提出問題。 新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統目的明確的設計方式,給學生最大的思考空間,充分體現學生主體地位。
問題1:下列問題中的函數各有什么共同特征?是否為指數函數?
由學生討論,總結,即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1
這時學生觀察可能有些困難,老師提示可以用x表示自變量,用y表示函數值,上述函數式變成:
都是自變量的若干次冪的形式。都是形如
的函數。
揭示課題:今天這節課,我們就來研究:冪函數
。ㄒ唬┱n堂主要內容
。1)冪函數的概念
、賰绾瘮档亩x。
一般地,函數
叫做冪函數,其中x 是自變量,a是常數。
、趦绾瘮蹬c指數函數之間的區別。
冪函數——底數是自變量,指數是常數;
指數函數——指數是自變量,底數是常數。
。2)幾個常見冪函數的圖象和性質
由同學們畫出下列常見的冪函數的圖象,并根據圖象將發現的性質填入表格
根據上表的內容并結合圖象,總結函數的共同性質。讓學生交流,老師結合學生的回答組織學生總結出性質。
以上問題的設計意圖:數形結合是一個重要的數學思想方法,它包含以數助形,和以形助數的思想。通過問題設計讓學生著手實際,借助行的生動來闡明冪函數的性質。
教師講評:冪函數的性質.
①所有的冪函數在(0,+∞)上都有定義,并且圖像都過點(1,1).
②如果a>0,則冪函數的圖像通過原點,并在區間〔0,+∞)上是增函數.
③如果a<0,則冪函數在(0,+∞)上是減函數,在第一象限內,當x從右邊趨向于原點時,圖像在y軸右方無限地趨近y軸;當x趨向于+∞時,圖像在x軸上方無限地趨近x軸.
、墚攁為奇數時,冪函數為奇函數;當a為偶數時,冪函數為偶函數。
以問題設計為主,通過問題,讓學生由已經學過的指數函數,對數函數,描點作圖得到五個冪函數的圖像,但是我們應該知道繪制冪函數的圖像比繪制指數函數和對數函數的圖像更為復雜,因為冪函數隨著冪指數的輕微變化會出現較大的變化,因此,在描點作圖之前,應引導學生對幾個特殊的冪函數的性質先進行初步的探究,如分析函數的定義域,奇偶性等,在根據研究結果和描點作圖畫出圖像,讓學生觀察所作圖像特征,并由圖象特征得到相應的函數性質,讓學生充分體會系統的研究方法。同時學生對于歸納性質這一環節相對指數函數,對數函數的性質,學生會有更大的困難。因此,教學中只須對他們的圖像與基本性質進行認識,而不必在一般冪函數上作過多的引申和介紹。在教學中,采用從具體到一般,再從一般到具體的安排。
通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。
。3)當堂訓練,鞏固深化
例題和練習題的選取應結合學生認知探究,鞏固本節課的重點知識,并能用知識加以運用。本節課選取主要選取了兩道例題。
例1是課本上的例題:證明f(x)=x1/2在(0,+∞)上是增函數。這題先從“形”的角度判斷函數的單調區間和單調性,再用到定義從“數”的角度對函數的單調性進行推理論證,培養學生的數形結合的數學思想和解決問題的專業素養。
例2是補充例題,主要培養學生根據體例構造出函數,并利用函數的性質來解決問題的能力,從而加深學生對冪函數及其性質的理解。注意:由于學生對冪函數還不是很熟悉,所以在講評中要刻意體現出冪函數y=x1。3是增函數與y=x—5/4的圖像的畫法,即再一次讓學生體會根據解析式來畫圖像解題這一基本思路
。4)小結歸納,回顧反思。 小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。我設計了三個問題:
(1)通過本節課的學習,你學到了哪些知識?
。2)通過本節課的學習,你最大的體驗是什么?
。3)通過本節課的學習,你掌握了哪些技能?
(二)作業設計 作業分為必做題和選做題,必做題對本節課學生知識水平的反饋,選做題是對本節課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展、合作探究的學習氛圍的形成. 我設計了以下作業:
。1)必做題
。2)選做題
。ㄈ┌鍟O計
板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。
五、評價分析
學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對冪函數是否有一個完整的集訓,并進行及時的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。
謝謝!
高中數學說課稿 篇8
各位同仁,各位專家:
我說課的課題是《任意角的三角函數》,內容取自蘇教版高中實驗教科書《數學》第四冊 第1。2節
先對教材進行分析
教學內容:任意角三角函數的定義、定義域,三角函數值的符號。
地位和作用: 任意角的三角函數是本章教學內容的基本概念對三角內容的整體學習至關重要。同時它又為平面向量、解析幾何等內容的學習作必要的準備,通過這部分內容的學習,又可以幫助學生更加深入理解函數這一基本概念。所以這個內容要認真探討教材,精心設計過程。
教學重點:任意角三角函數的定義
教學難點:正確理解三角函數可以看作以實數為自變量的函數、初中用邊長比值來定義轉變為坐標系下用坐標比值定義的觀念的轉換以及坐標定義的合理性的理解;
學情分析:
學生已經掌握的內容,學生學習能力
1。初中學生已經學習了基本的銳角三角函數的定義,掌握了銳角三角函數的一些常見的知識和求法。
2。我們南山區經過多年的初中課改,學生已經具備較強的自學能力,多數同學對數學的學習有相當的興趣和積極性。
3。在探究問題的能力,合作交流的意識等方面發展不夠均衡,尚有待加強必須在老師一定的指導下才能進行
針對對教材內容重難點的和學生實際情況的分析我們制定教學目標如下
知識目標:
(1)任意角三角函數的定義;三角函數的定義域;三角函數值的符號,
能力目標:
。1)理解并掌握任意角的三角函數的定義;
。2)正確理解三角函數是以實數為自變量的函數;
。3)通過對定義域,三角函數值的符號的推導,提高學生分析探究解決問題的能力。
德育目標:
(1)學習轉化的思想,(2)培養學生嚴謹治學、一絲不茍的科學精神;
針對學生實際情況為達到教學目標須精心設計教學方法
教法學法:溫故知新,逐步拓展
(1)在復習初中銳角三角函數的定義的基礎上一步一步擴展內容,發展新知識,形成新的概念;
。2)通過例題講解分析,逐步引出新知識,完善三角定義
運用多媒體工具
。1)提高直觀性增強趣味性。
教學過程分析
總體來說, 由舊及新,由易及難,
逐步加強,逐步推進
先由初中的直角三角形中銳角三角函數的定義
過度到直角坐標系中銳角三角函數的定義
再發展到直角坐標系中任意角三角函數的定義
給定定義后通過應用定義又逐步發現新知識拓展完善定義。
具體教學過程安排
引入: 復習提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?
由學生回答
SinA=對邊/斜邊=BC/AB
cosA=對邊/斜邊=AC/AB
tanA=對邊/斜邊=BC/AC
逐步拓展:在高中我們已經建立了直角坐標系, 把“定義媒介”從直角三角形改為平面直角坐標系。
我們知道,隨著角的概念的推廣,研究角時多放在直角坐標系里, 那么三角函數的定義能否也放到坐標系去研究呢?
引導學生發現B的坐標和邊長的關系。進一步啟發他們發現由于相似三角形的相似比導致OB上任一P點都可以代換B,把三角函數的定義發展到用終邊上任一點的坐標來表示, 從而銳角三角函數可以使用直角坐標系來定義,自然地,要想定義任意一個角三角函數,便考慮放在直角坐標中進行合理進行定義了
從而得到
知識點一:任意一個角的三角函數的定義
提醒學生思考:由于相似比相等,對于確定的角A ,這三個比值的大小和P點在角的終邊上的位置無關。
精心設計例題,引出新內容深化概念,完善定義
例1已知角A 的終邊經過P(2,—3),求角A的三個三角函數值
(此題由學生自己分析獨立動手完成)
例題變式1,已知角A 的大小是30度,由定義求角A的三個三角函數值
結合變式我們發現三個三角函數值的大小與角的大小有關,只會隨角的大小而變化,符合當初函數的定義,而我們又一直稱呼為三角函數,
提出問題:這三個新的定義確實問是函數嗎?為什么?
從而引出函數極其定義域
由學生分析討論,得出結論
知識點二:三個三角函數的定義域
同時教師強調:由于弧度制使角和實數建立了一一對應關系,所以三角函數是以實數為自變量的函數
例題變式2, 已知角A 的終邊經過P(—2a,—3a)( a不為0),求角A的三個三角函數值
解答中需要對變量的正負即角所在象限進行討論, 讓學生意識到三角函數值的正負與角所在象限有關,從而導出第三個知識點
知識點三:三角函數值的正負與角所在象限的關系
由學生推出結論,教師總結符號記憶方法,便于學生記憶
例題2:已知A在第二象限且 sinA=0。2 求cosA,tanA
求cosA,tanA
綜合練習鞏固提高,更為下節的同角關系式打下基礎
拓展,如果不限制A的象限呢,可以留作課外探討
小結回顧課堂內容
課堂作業和課外作業以加強知識的記憶和理解
課堂作業P16 1,2,4
。▽W生演板,后集體討論修訂答案同桌討論,由學生回答答案)
課后分層作業(有利于全體學生的發展)
必作P23 1(2),5(2),6(2)(4) 選作P23 3,4
板書設計(見PPT)
高中數學說課稿 篇9
1. 教材分析
1-1教學內容及包含的知識點
(1) 本課內容是高中數學第二冊第七章第三節《兩條直線的位置關系》的最后一個內容。
(2) 包含知識點:點到直線的距離公式和兩平行線的距離公式。
1-2教材所處地位、作用和前后聯系
本節課是兩條直線位置關系的最后一個內容,在此之前,有對兩線位置關系的定性刻畫:平行、垂直,以及對相交兩線的定量刻畫:夾角、交點。在此之后,有圓錐曲線方程,因而本節既是對前面兩線垂直、兩線交點的復習,又是為后面計算點線距離(在直線和圓錐曲線構成的組合圖形中)提供一套工具。
可見,本課有承前啟后的作用。
1-3教學大綱要求
掌握點到直線的距離公式
1-4高考大綱要求及在高考中的顯示形式
掌握點到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構成的組合圖形為背景,判斷直線和圓錐曲線的位置或構成三角形求高,涉及絕對值,直線垂直,最小值等。
1-5教學目標及確定依據
教學目標
(1) 掌握點到直線的距離的概念、公式及公式的推導過程,能用公式來求點線距離和線線距離。
(2) 培養學生探究性思維方法和由特殊到一般的研究能力。
(3) 認識事物之間相互聯系、互相轉化的辯證法思想,培養學生轉化知識的能力。
(4) 滲透人文精神,既注重學生的智慧獲得,又注重學生的情感發展。
確定依據:
中華人民共和國教育部制定的《全日制普通高級中學數學教學大綱》(20xx年4月第一版),《基礎教育課程改革綱要(試行)》,《高考考試說明》(20xx年)
1-6教學重點、難點、關鍵
(1) 重點:點到直線的距離公式
確定依據:由本節在教材中的地位確定
(2) 難點:點到直線的距離公式的推導
確定依據:根據定義進行推導,思路自然,但運算繁瑣;用等積法推導,運算較簡單,但思路不自然,學生易被動,主體性得不到體現。
分析“嘗試性題組”解題思路可突破難點
(3)關鍵:實現兩個轉化。一是將點線距離轉化為定點到垂足的距離;二是利用等積法將其轉化為直角三角形中三頂點的距離。
2.教法
2-1發現法:本節課為了培養學生探究性思維目標,在教學過程中,使老師的主導性和學生的主體性有機結合,使學生能夠愉快地自覺學習,通過學生自己練習“嘗試性題組”,引導、啟發學生分析、發現、比較、論證等,從而形成完整的數學模型。
確定依據:
(1)美國教育學家波利亞的教與學三原則:主動學習原則,最佳動機原則,階段漸進性原則。
(2)事物之間相互聯系,相互轉化的辯證法思想。
2-2教具:多媒體和黑板等傳統教具
3. 學法
3-1發現法:豐富學生的數學活動,學生經過練習、觀察、分析、探索等步驟,自己發現解決問題的方法,比較論證后得到一般性結論,形成完整的數學模型,再運用所得理論和方法去解決問題。
一句話:還課堂以生命力,還學生以活力。
3-2學情:
(1)知識能力狀況,本節為兩線位置關系的最后一個內容,在這之前學生已經系統的學習了直線方程的各種形式,有對兩線位置關系的定性認識和對兩線相交的定量認識,為本節推證公式涉及到直線方程、兩線垂直、兩線交點作好了知識儲備。同時學生對解析幾何的實質中,用坐標系溝通直線與方程的研究辦法,有了初步認識,數形結合的思想正逐漸趨于成熟。
(2)心理特點:又見“點到直線的距離”(初中已學習定義),學生既熟悉又陌生,既困惑又好奇,探詢動機由此而生。
(3)生活經驗:數學源于生活,生活中的點線距隨處可見,怎樣將實際問題數學化,是每個追求成長、追求發展的學生所渴求的一種研究能力。豐富的課堂數學活動能夠讓他們真正參與,體驗過程,錘煉意志,培養能力。
3-3學具:直尺、三角板
4. 教學評價
學生完成反思性學習報告,書寫要求:
(1) 整理知識結構。
(2) 總結所學到的基本知識,技能和數學思想方法。
(3) 總結在學習過程中的經驗,發明發現,學習障礙等,說明產生障礙的原因。
(4) 談談你對老師教法的建議和要求。
作用:
(1) 通過反思使學生對所學知識系統化。反思的過程實際上是學生思維內化,知識深化和認知牢固化的一個心理活動過程。
(2) 報告的寫作本身就是一種創造性活動。
(3) 及時了解學生學習過程中的知識缺陷,思維障礙,有利于教師了解學生對自己的教法的滿意度和效果,以便作出及時調整,及時進行補償性教學。
5. 板書設計
(略)
6. 教學的反思總結
心理歷練,得意之處,困惑之處,知識的傳承發展,如何修正完善等。
【實用的高中數學說課稿范文集合9篇】相關文章:
實用的高中數學說課稿范文集合八篇08-19
實用的高中數學說課稿范文集合7篇08-18
實用的高中數學說課稿范文集合6篇08-16
實用的高中數學說課稿范文集合8篇08-16
實用的高中數學說課稿范文集合10篇08-14
實用的高中數學說課稿范文集合九篇06-26
實用的高中數學說課稿范文7篇07-26
實用的高中數學說課稿范文集合十篇08-20
實用的高中數學說課稿范文合集5篇08-11