1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 初二數學學習方法

        時間:2024-10-21 09:18:21 王娟 學習方法 我要投稿

        初二數學學習方法

          在現實生活或工作學習中,我們每個人都需要不斷地學習,正確的學習方法,能夠讓我們學習事半功倍!什么樣的學習方法才是真正有效的呢?以下是小編整理的初二數學學習方法,僅供參考,希望能夠幫助到大家。

        初二數學學習方法

          初二數學學習方法1

          一、初中生數學學習存在的主要障礙

          1.依賴心理。

          2.急躁心理。

          3.定勢心理。

          4.偏重結論。

          二、初中生課前的數學學習方法

          1.課前的預習方法:一看、二讀、三做。

          2.不同的知識預習方法有所不同。

          (1)數學概念的學習方法:

          ①讀概論,記住名稱或符號;

          ②閱讀背誦定義,掌握特性;

          ③舉出正反實例,體會概念反映的范圍;

         、苓M行練習,準確地判斷;

         、菖c其他概念相比較,弄清概念間的關系。

          (2)數學公式的學習方法:

         、僬_書寫公式,記住公式中字母間的關系;

         、诙霉降膩睚埲ッ},掌握推導過程;

         、塾脭底烛炈愎剑诠骄唧w化過程中體會公式中反映的規律;

         、軐⒐竭M行各種變換,了解其不同的變化形式;

         、葑兓街械淖帜杆N含的內容,達到自如地應用公式。

          (3)數學定理的學習方法:

          ①背誦定理;

         、诜智宥ɡ淼臈l件和結論;

         、劾斫舛ɡ淼淖C明過程;

         、軕枚ɡ碜C明有關問題;

         、蒹w會定理與有關定理和概念的內在關系。

          初二數學學習方法2

          1.溫故法

          概念教學的起步是在已有的認知結論的基礎上進行的。因此,教學新概念前,如果能對自己認知結構中原有的概念適當作一些結構上的變化,引入新概念,則有利于促進新概念的形成。

          2.類比法

          抓住新舊知識的本質聯系,有目的、有計劃地讓自己將有關新舊知識進行類比,就能很快地得出新舊知識在某些屬性上的相同(相似)的結構而引進概念。

          3.喻理法

          為正確理解某一概念,以實例或生活中的趣事、典故作比喻,引出新概念,謂之喻理導入法。

          如,學“用字母表示數”時,先出示的兩句話:“阿Q和小D在看《W的悲劇》!、“我在A市S街上遇見一位朋友!眴枺哼@兩個句子中的字母各表示什么?再出示撲克牌“紅桃

          A”,要求自己回答這里的A則表示什么?最后出示等式“0.5×x=3.5”,擦去等號及3.5,變成“0.5×x”后,問兩道式子里的X各表示什么?根據自己的回答,教師結合板書進行小結:字母可以表示人名、地名和數,一個字母可以表示一個數,也可以表示任何數。

          這樣,枯燥的概念變得生動、有趣,同學們在由衷的喜悅中進入了“字母表示數”概念的學習。

          4.置疑法

          通過揭示數學自身的矛盾來引入新概念,以突出引進新概念的必要性和合理性,調動了解新概念的強烈動機和愿望。

          5.演示法

          有些教學概念,如果把它最本質的屬性用恰當的圖形表示出來,把數與形結合起來,使感性材料的提供更為豐富,則會收到良好效果,易于理解和掌握。

          如,學“求一個數的幾倍是多少”的應用題,重要的是建立“倍”的概念。引進這個概念,可出示

          2只一行的白蝴蝶圖,再2只、2只地出示3個2只的第二行花蝴蝶圖,結合演示,通過循序答問,使自己清晰地認識到:花蝴蝶與白蝴蝶比較,白蝴蝶1個2只,花蝴蝶是3個2只;把一個2只當作1份,則白蝴蝶的只數相當于1份,花蝴蝶就有3份。用數學上的話說:花蝴蝶與白蝴蝶比,把白蝴蝶當作一倍,花蝴蝶的只數就是白蝴蝶的3倍,這樣,從演示圖形中讓自己看到從“個數”到“份數”,再引出倍數,很快地觸及了概念的本質。

          6.問答法

          引入概念采用問答式,能在疑、答、辯的過程中,步步探幽,引人入勝。

          初二數學學習方法3

          (一)運用公式法

          我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:

          a2-b2=(a+b)(a-b)

          a2+2ab+b2=(a+b)2

          a2-2ab+b2=(a-b)2

          如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。

          (二)平方差公式

          平方差公式

          (1)式子:a2-b2=(a+b)(a-b)

          (2)語言:兩個數的平方差,等于這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。

          (三)因式分解

          1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。

          2.因式分解,必須進行到每一個多項式因式不能再分解為止。

          (四)完全平方公式

          (1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:

          a2+2ab+b2=(a+b)2

          a2-2ab+b2=(a-b)2

          這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等于這兩個數的和(或者差)的平方。

          把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

          上面兩個公式叫完全平方公式。

          (2)完全平方式的形式和特點

         、夙棓担喝

         、谟袃身検莾蓚數的的平方和,這兩項的符號相同。

          ③有一項是這兩個數的積的兩倍。

          (3)當多項式中有公因式時,應該先提出公因式,再用公式分解。

          (4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。

          (5)分解因式,必須分解到每一個多項式因式都不能再分解為止。

          (五)分組分解法

          我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

          如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.

          原式=(am+an)+(bm+bn)

          =a(m+n)+b(m+n)

          做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以

          原式=(am+an)+(bm+bn)

          =a(m+n)+b(m+n)

          =(m+n)×(a+b).

          初二數學學習方法4

          一、課內重視聽講,課后及時復習。

          新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業,勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網絡,納入自己的知識體系。

          二、適當多做題,養成良好的解題習慣

          要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。

          三、調整心態,正確對待考試。

          首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。

          在考試前要做好準備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。

          由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。

          初一學生如何利用暑假提前學習初二知識點?

          {RKEY},{RKEY},{RKEY},初一學生如何利用暑假提前學習初二知識點?,{RKEY},{RKEY},{RKEY}

          如今中考的競爭越來越激烈,北京市各重點中學為了在中考中取得好成績,大都加強了小升初中的選拔力度,從而為本校初中部儲備更多優秀的生源。但這還遠遠不夠,到了初中,幾乎所有的實驗班又要在初二進行一次選拔考試。選拔的目的無外乎兩種:

          其一,選拔出優秀的學生進入實驗班。為此實驗班會有一個很好的學習競爭環境,更進一步地促進優秀生的更高層次的提高;

          其二、在初二結束學完大部分初中知識后進行選拔,從而區分不同層次的學生,在中考之前錄取一部分最優秀的學生免試進入本校高中部學習。

          因此,初二是初中階段一個至關重要的時期,把握住這樣的選拔機會對每一個學生來說都是重要的。

          初二數學學習方法5

          1、初一的學生為什么要提前學習初二的知識?

          各個學校的實驗班基本上都要求在初二結束前把初中的內容講完,因此,進入初二之后,學習進度的加快是顯而易見的。在初一階段,實驗班的教學主要是在難度上進行加深;而到了初二以后,難度變大,速度變快 初一學生如何利用暑假提前學習初二知識點?,學科增多,因此提前掌握基本的知識點是非常有必要的。如果我們不能夠提前對所學知識進行一定的了解,在知識點比較難以理解的時候,就很難跟上初二的學習步伐。

          提前學過一遍,在新學期學習的過程中,孩子會感到學得輕松很多。這樣孩子能夠更好地樹立起對學科的信心。尤其是已經學過初二數學和物理的孩子,在碰到難題的時候不容易氣餒。而且,提前學完了功課,孩子在學習過程中有余力去攻克一些難題,有更多的時間去補習自己的弱項。

          2、在暑期學習中如何拓寬知識面?

          重點中學實驗班與普通班的區別除了教學進度不同外,最主要的不同就是教學難度加深,大部分實驗班都將所學知識點的基礎奧數內容融合在教學中,而初二的考試是屬于選拔性的,有相當一部分比較難的題目。所以,同學們一定要在暑期學習的同時,利用課外時間進一步深化所學知識點的難度,適當掌握相關的奧數知識和技巧。

          進入初二以后,要保持不斷進取的學習態度,養成良好的學習習慣,摸索出適合自己的一套學習方法,這樣才能在學習中取得好的成績。

          3、暑期要提前學習哪些知識點 初一學生如何利用暑假提前學習初二知識點?

          如果說初一的數學是基礎,那么初二的數學就是深入,因為初二數學有很多知識點和技巧是很難的。比如初二數學中“三角形”、“一次函數”等問題。這些知識點的提前學習,可以幫助同學們在暑期開學后的新初二的學習中在基礎上有個提高。

          另外初二年級又增加了一門新的學科--物理,在暑期先把這門科目進行系統的學習,把重點部分如“光的折射、反射”、“簡單運動”等著重的學習一遍,有利于開學后新課程學習的更好、更快的掌握。

          想要在初二繼續領先,必須在暑期把初二的知識系統的學習一遍,對知識先進行一個大概的了解,特別是對初二上學期課程的學習,只有這樣才能在初二的學習中,以及秋季班的同步提高學習打下一個堅實的基礎。

          綜上所述,只要保持不斷進取的學習態度,及時解決學習中的各種問題,掌握系統復習的學習方法,加深難度,熟練技巧,抓住良機,以戰略的眼光做好調整,才能為初二年級的學習進步創造條件。

          初二數學學習方法6

          初二數學學習是比較關鍵的時候,學好初二數學對于中考十分重要,同學們要如何學習呢?卓越教育認為,學習初二數學首先要學好新知識,其次要多做練習。想必大多數同學也了解這一點,關鍵是如何去做。

          新知識的學習

          初二數學在整個初中學習過程中有著承上啟下的作用,卓越教育認為,同學們首先要學好新知識,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。

          在數學課堂上,同學們要注意緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。卓越教育認為同學們特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。

          對于習題的聯系,卓越教育建議同學們首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業,勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網絡,納入自己的知識體系。

          課后練習

          要想學好數學,多做題目是難免的,卓越教育認為同學們在練習時更應該熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。

          對于一些易錯題,卓越教育建議同學們可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。卓越教育認為同學們在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,同學們所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。

          初二數學學習方法7

          部分分式是初中數學競賽的重要內容,在初中數學競賽中常有應用,而且在今后學習微積分時還要經常用到。部分分式中體現出來的把整體分解成部分來處理問題的方法也是一種重要的思想方法,這種方法對我們解決問題有指導意義。下面我們介紹部分分式及其應用。

          對于一個分子、分母都是多項式的分式,當分母的次數高于分子的次數時,我們把這個分式叫做真分式。如果一個分式不是真分式,可以通過帶余除法化為一個多項式與一個真分式的和。把一個真分式化為幾個更簡單的真分式的代數和,稱為將分式化為部分分式。

          把一個分式分為部分分式的一般步驟是:

          (1)把一個分式化成一個整式與一個真分式的和;

          (2)把真分式的分母分解因式;

          (3)根據真分式的分母分解因式后的形式,引入待定系數來表示成為部分分式的形式;

          (4)利用多項式恒等的性質和多項式恒等定理列出關于待定系數的方程或方程組;

          (5)解方程或方程組,求待定系數的值;

          (6)把待定系數的值代入所設的分式中,寫出部分分式。

          初二數學學習方法8

          一、該記的記,該背的背,不要以為理解了就行

          有的同學認為,數學不像英語、史地,要背單詞、背年代、背地名,數學靠的是智慧、技巧和推理。我說你只講對了一半。數學同樣也離不開記憶。試想一下,小學的加、減、乘、除運算要不是背熟了“乘法九九表”,你能順利地進行運算嗎?盡管你理解了乘法是相同加數的和的運算,但你在做9x9時用九個9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同樣,是運用大家熟記的法則做出來的。同時,數學中還有大量的規定需要記憶,比如規定(a≠0)等等。因此,我覺得數學更像游戲,它有許多游戲規則(即數學中的定義、法則、公式、定理等),誰記住了這些游戲規則,誰就能順利地做游戲;誰違反了這些游戲規則,誰就被判錯,罰下。因此,數學的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。比如大家熟悉的“整式乘法三個公式”,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鐘,如果背不出這三個公式,將會對今后的學習造成很大的麻煩,因為今后的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。

          對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數學的定義、法則、公式、定理就很難解數學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。

          二、幾個重要的數學思想

          1、“方程”的思想

          數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是“方程”。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度x時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學就已經接觸過簡易方程,而初一則比較系統地學習解一元一次方程,并總結出解一元一次方程的五個步驟。如果學會并掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二、初三我們還將學習解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學習指數方程、對數方程、線性方程組、、參數方程、極坐標方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好其它形式的方程。

          所謂的“方程”思想就是對于數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善于用“方程”的觀點去構建有關的方程,進而用解方程的方法去解決它。

          2、“數形結合”的思想

          大千世界,“數”與“形”無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小這兩個屬性,就交給數學去研究了。初中數學的兩個分支?-代數和幾何,代數是研究“數”的,幾何是研究“形”的。但是,研究代數要借助“形”,研究幾何要借助“數”,“數形結合”是一種趨勢,越學下去,“數”與“形”越密不可分,到了高中,就出現了專門用代數方法去研究幾何問題的一門課,叫做“解析幾何”。在初三,建立平面直角坐標系后,研究函數的問題就離不開圖象了。往往借助圖象能使問題明朗化,比較容易找到問題的關鍵所在,從而解決問題。在今后的數學學習中,要重視“數形結合”的思維訓練,任何一道題,只要與“形”沾得上一點邊,就應該根據題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人慢慢會養成一種“數形結合”的好習慣。

          初二數學學習方法9

          課前課上及課后

          先來說說大家都熟知的一些學習方法,也是一些基本的方法,這些方法確實是一些好的方法,主要就是看大家能不能真正的做好這些事情。下面讓我們來具體地看看。

          1、課前

          課前需要預習,預習需要我們去把接下來要上的內容整體上看一遍,然后找出其中的重點與難點,以及自己無法很好理解的內容,分別做上不同的標記,以便在上課的時候針對自己的問題去認真聽課與重點理解。

          2、課上

          在上課的時候不太可能整節課都集中精神,這時候就更顯現出我們課前預習的重要性了。我們需要在上課的時候集中精神聽講預習中所遇到的重點與難點,盡量地在課堂上去理解吸收。同時也可以看看老師講的重點與自己課前預習所確定的重點是否一致。另外,對于老師重點講解的東西需要做下相應的筆記,以便之后復習用。

          3、課后

          課后的復習一定要及時跟上,不僅當天要對學習的內容進行復習,在之后的幾天里也應該要花一定的時間去復習,同時可以跟上一些練習進行檢測與鞏固。如果復習的時候發現還有不明白的地方,一定要及時的去詢問老師或是其他同學,將其弄懂。

          課前課上及課后三個步驟環環相扣,一定要把每一步都做到位。

          提高作業效率

          現在很多學生以及家長都反應說作業太多,來不及或是沒有時間去完成作業,導致學習成績不佳。但是我們應該要想一想,我們大家的時間都是一樣多的,而大家的作業也是一樣多的,為什么有的人能夠完成,而有的人不能夠完成呢。

          這里就要說到學習的效率了,是因為一種不好的學習習慣,導致了做作業的效率不高。那么我們應該如何去提高做作業的效率呢?下面我給出了幾個建議,供大家參考一下。

          1、要有端正的寫作業的態度

          從思想上要認真對待,如果養成懶散的習慣了,以后問題就會更多,今日不努力,明日就會失去更多,再要改善起來,就更難了。

          因為一個好習慣的養成是要下決心去堅持的,雖然由于以前的習慣不好或者遺留問題太多導致在堅持的過程中會容易產生抵觸的情緒,甚至有時還容易放棄,但是要知道,一旦好習慣養成之后,原來所經常遇到的問題就會越來越少,成績也自然提高了起來。

          2、注意力一定要集中

          不要在寫作業的時候干其他的事或想其他事,一心不能二用。盡快地把作業做完了才能夠去做別的事情。

          3、要學會總結

          如果在看到題目后能很快反映出這題目所需要的知識點,那么做題速度就會提高,在做題之后也要總結一下思路。多總結一下會發現很多題目都有規律可循,這樣可以起到事半功倍的效果,以后再碰到類似問題時,就可以很輕松了。

          4、營造一個良好的寫作業環境

          孩子寫作業時盡量保持安靜,書桌上除了放書、學習用品等之外,不要放其他的東西,以免分散他們的注意力。家長也不要過度的嘮叨和訓斥,要多鼓勵孩子。

          加強計算能力

          計算一直是數學的一個核心內容,幾乎每一個數學問題都需要通過計算。那么,計算的準確率就顯得尤為重要了。想要提高數學成績,計算的準確率是一定要提高的。那么如何提高計算的準確率呢?這里我也同樣給出了幾條建議。

          1、強化學生的有意注意和良好的計算習慣

         。1)仔細審題的習慣。拿到題目后認真審題,看清題目的要求,想明白過程中應該注意哪些問題。

          (2)細心檢查的習慣。先從思路上檢查一遍看是否有遺漏,再將答案代回原來的問題驗算。若為計算題則仔細檢查每一個步驟。

         。3)認真書寫的習慣。書寫要干凈整潔,這樣能使自己在做題時看清題目,避免錯誤的發生。

          2、強化口算能力

          任何計算都是以口算為基礎的,口算能力的高低,直接影響到學生其它運算能力的提高。要提高口算能力,首先要抓好口算的基本訓練,所以應當經常性的進行一些口算的練習。

          3、速算巧算

          平時在做計算的時候要注意運算技巧地運用,加快運算速度,特別是在分數計算的部分,有時候數字比較大比較多,通分將會很困難,這時可能把分母寫成乘積的形式將是一種更好的選擇。

          4、強化估算能力

          很多的問題,特別是應用題,當看到問題后就能夠大概地去估計一下結果大概會是一個什么范圍的數,有了這種估計能力之后,有時候發生計算錯誤就能夠一下子看出來。所以在做題之前我們也可以估計一下答案的范圍,如果算得的答案不在這個范圍,那就需要我們去檢查了。

          5、合理利用一些數的性質

          比如說奇數乘以偶數一定是一個偶數,各位數字和是3的倍數的數一定能被3整除等等性質,都可以幫助我們對運算是否準確做一些輔助的判斷。

          說了這么多,總結起來其實也很簡單,只要堅持一個好的學習習慣,做好復習練習,那么數學學習就能夠事半功倍,學好數學自然也就不在話下。

          初二數學學習方法10

          這個階段的復習目的是讓學生全面掌握初中數學基礎知識,提高基本技能,做到全面、扎實、系統,形成知識網絡。

          1、重視課本,系統復習。現在中考命題仍然以基礎題為主,有些基礎題是課本上的原題或改造,后面的大題雖是“高于教材”,但原型一般還是教材中的例題或習題,是教材中題目的引伸、變形或組合,所以建議第一階段復習應以課本為主。

          必須深鉆教材,絕不能脫離課本,應把書中的內容進行歸納整理,使之形成結構。課本中的例題、練習和作業要讓學生弄懂、會做,書后的“讀一讀”、“想一想”,也要學生認真想一想,集中精力把分式與根式的化簡等重點內容的例題、習題逐題認認真真地做一遍,并注意解題方法的歸納和整理。一味搞題海戰術,整天埋頭讓學生做大量的課外習題,其效果并不明顯,有本末倒置之嫌。

          2、夯實基礎,學會思考。隨著素質教育的深化,中考改革已引起各級教育行政部門的高度重視,目前,蘇州市初中畢業考試與升學考試尚未分開,這是兩種不同性質的考試,為了正確評價教育的質量,中考數學命題時,必須有足夠的分值用于檢測學生的學業水平。初三數學復習教學中,必須扎扎實實地夯實基礎,通過系統的復習,使每個學生對初中數學知識都能達到“理解”和“掌握”的要求;在應用基礎知識時能做到熟練、正確和迅速。讓學生學會思考是從根本上提高成績,解決問題的良方,這里講的不是“教會學生思考”,而是“讓學生學會思考”。會思考是要學生自己“悟”出來,自己“學”出來的,教師能教的,是思考問題的方法和策略,然后讓學生用學到的方法和策略,在解決具有新情境問題的過程中,感悟出如何進行正確的思考。

          3、重視對基礎知識的理解和基本方法的指導;A知識即初中數學課程中所涉及的概念、公式、公理、定理等。要求學生掌握各知識點之間的內在聯系,理清知識結構,形成整體的認識,并能綜合運用。

          中考數學命題除了著重考查基礎知識外,還十分重視對數學方法的考查,如配方法,換元法,判別式法等操作性較強的數學方法。在復習時應對每一種方法的內涵,它所適應的題型,包括解題步驟都應熟練掌握。

          初二數學學習方法11

          1、配方法 。所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

          2、因式分解法因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。

          3、換元法換元法是初中數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。

          4、判別式法與韋達定理一元二次方程ax2+bx+c=0(a、b、c屬于R,a0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

          5、待定系數法在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而后根據題設條件列出關于待定系數的等式,最后解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。

          6、構造法在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利于問題的解決。

          7、反證法反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然后,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。

          8、面積法平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。

          9、幾何變換法在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利于對圖形本質的認識。

          幾何變換包括:

         。1)平移;

         。2)旋轉;

         。3)對稱。

          初二數學學習方法12

          1、做題之后加強反思

          學生一定要明確,現在正坐著的題,一定不是考試的題目。而是要運用現在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思。總結一下自己的收獲。要總結出,這是一道什么內容的題,用的是什么方法。做到知識成片,問題成串,日久天長,構建起一個內容與方法的科學的網絡系統。

          2、錯題本

          說到錯題本不少同學都覺得自己的記憶力好,不需要錯題本就能記住,這是一種“錯覺”,每個人都有這種感覺,等到題目增多,學習內容加深,這時就會發現自己力不從心了。錯題本能夠隨時記錄自己的知識短板,幫助強化知識體系,有助于提升學習效率。有很多學霸都是因為積極使用了錯題本,而考取了高分。

          3、夯實基礎,學會思考

          數學中考試題中,基礎分值占的最多。因此,初三數學復習教學中,必須扎扎實實地夯實基礎,使每個學生對初中數學知識都能達到“理解”和“掌握”的要求;在應用基礎知識時能做到熟練、正確和迅速。

          4、雙基訓練

          雙基即基礎知識與基本技能;A知識是指數學概念、定理、法則、公式以及各種知識之間的內在聯系;基本技能是一種較穩定的心理因素,是一種已經程式化了的動作,初中數學基本技能包括運算技能、畫圖技能、運用數字語言的技能、推理論證的技能等。只有扎實地掌握“雙基”,才能靈活應用、深入探索,不斷創新。

          初二數學學習方法13

          初中數學是一個整體。初二的難點最多,初三的考點最多。相對而言,初一數學知識點雖然很多,但都比較簡單。

          初二同學中,有一部分新同學就是對初一數學不夠重視,在進入初二后,發現跟不上老師的進度,感覺學習數學越來越吃力,希望參加我們的輔導班來彌補的。這個問題究其原因,主要是對初一數學的基礎性,重視不夠。我們這里先列舉一下在初一數學學習中經常出現的幾個問題:

          1、對知識點的理解停留在一知半解的層次上;

          2、解題始終不能把握其中關鍵的數學技巧,孤立的看待每一道題,缺乏舉一反三的能力;

          3、解題時,小錯誤太多,始終不能完整的解決問題;

          4、解題效率低,在規定的時間內不能完成一定量的題目,不適應考試節奏;

          5、未養成總結歸納的習慣,不能習慣性的歸納所學的知識點;

          以上這些問題如果在初一階段不能很好的解決,在初二的兩極分化階段,同學們可能就會出現成績的滑坡。相反,如果能夠打好初一數學基礎,初二的學習只會是知識點上的增多和難度的增加,在學習方法上同學們是很容易適應的。

          建議是:很多同學在學校里的學習中感受不到壓力,慢慢積累了很多小問題,這些問題在進入初二,遇到困難(如學科的增加、難度的加深)后,就凸現出來。

          初二數學學習方法14

          1、課前認真預習。預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十。帶著預習中不明白的問題去聽老師講課,來解答這類的問題。預習還可以使聽課的整體效率提高。具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15—20分鐘。在時間允許的情況下,還可以將練習冊做完。

          2、讓數學課學與練結合。在數學課上,光聽是沒用的當老師讓同學去黑板上演算時,自己也要在草稿紙上練。如果遇到不懂的難題,一定要提出來,不能不求甚解。否則考試遇到類似的題目就可能不會做。聽老師講課時一定要全神貫注,要注意細節問題,否則“千里之堤,毀于蟻穴”。

          3、課后及時復習。寫完作業后對當天老師講的內容進行梳理,可以適當地做25分鐘左右的課外題?梢愿鶕约旱男枰x擇適合自己的課外書。其課外題內容大概就是今天上的課。

          4、單元測驗是為了檢測近期的學習情況。其實分數代表的是你的過去,關鍵的是對于每次考試的總結和吸取教訓,是為了讓你在期中、期末考得更好。老師經常會在沒通知的情況下進行考試,所以要及時做到“課后復習”。

          初二數學學習方法15

          第一,要有良好的預習習慣。預習是學好數學的一個必不可少的環節,它可以讓我們對一課的內容有一個大致的了解,知道它的學習方向。這樣就可以讓你在課堂上游刃有余,養成良好的預習習慣,還會使同學們的自學能力大大提高。

          第二,要有良好的聽課方法。課堂學習是我們學好數學的一個關鍵步驟,課堂效率高的人,會學得很輕松。聽課方面要求學生上課做到“一專三動”,即專心聽老師對重點難點的剖析,聽例題解法及思路分析、技巧等;同時積極動腦、動手、動口參與教學活動。要善于用手“記”代替腦“聽”和“思”。我們不是常說“好記性不如爛筆頭”嘛!

          第三,要認真完成課后作業。有些學生是為交作業而做作業,從而起不到作業的練習鞏固、深化理解知識的應有作用。正確地完成作業的順序應是先回憶當天所學內容,弄懂重點知識后,再去做作業。

          初二數學學習方法16

          (1)怎樣聽課

          在課堂上,我們有些同學不會聽課,上課時老師在上面講,他就在下面記,老師講完了,他在下面記完了,老師講到的內容一點也沒聽到。所以上課時要處理好聽課和記筆記的關系。那么,聽課聽什么,怎么聽?

          (1)聽知識引入及知識形成過程,例如,我們在學習等腰三角形時,同學們知道等腰三角形的一條性質是“等邊對等角”,我們是怎樣推導這個性質的。

         。2)聽老師對重點、難點剖析(尤其是預習中的疑點)

          (3)聽例題解法的思路和數學思想方法。

          (2)怎樣記筆記

          再說記筆記,同學們一般不會合理記筆記,通常是教師黑板上寫什么學生就抄什么,往往是用“記”代替“聽講”和“思考”。有的筆記雖然記得很全,但效果不是很好,因此在作筆記時應做到:

         。1)記筆記服從聽講,要掌握記錄時機;一般情況下,需要記筆記的內容,老師都會給你留出時間。

         。2)記要點、記疑問、記解題思路和方法。要明確“記”是為前面的“聽課”和“思考”服務的。掌握好這三者的關系,就能使課堂學習主要環節達到較完美的境界。

         。3)多種感官協同并用記憶法

          對于一個新的事物,用眼睛看,只能見外形。如果加上耳朵聽、動手觸摸,能嗅、能嘗的,連嗅覺、味覺也用上,這樣,利用多種感覺器官與該事物接觸,就可獲得對該事物的多種信息,這些信息由大腦進行綜合的加工,必然獲得更加豐富、深刻而牢固的認識。日后在應用、提取的時候,由于多種感官之間已經建立起了神經活動聯系,恢復該事物痕跡的線索也會更多。這種方法用之于讀書,就是我國自古以來提倡的眼、耳、口、手、心“五到”讀書法。把眼看、口念、耳聽、手寫、腦記結合起來,決非愚笨,而是自覺地應用了符合科學原理的記憶方法,其效果必然顯著。

          例如“看圖動手操作記憶法”是多種感官并用法中之一種。例如,有的人愛看圖,尤其是用鉛筆或小棍指著看,效果尤佳。這是因為將視覺與動覺結合起來,既提高了注意的集中程度,又使視覺和動覺之間建立起了神經活動聯系。日后在回憶時,多重聯系較單一聯系更容易恢復起來,從而顯示出極其良好的記憶效果。 即使是學習數學公式,未嘗不可在眼看的同時,也用口念出聲來,再加上手寫。道理是完全相通的。

          初二數學學習方法17

          首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。

          在考試前要做好準備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。

          另外,對于數學這門學科來說,要根據自己的實力,特別是中等水平以下的同學,適當放棄自己力不從心的高難題,才能取得較好的成績。揚長補短應該是一種比較有效的方法,俗話說“狗熊嘴大啃地瓜,麻雀嘴小啄芝麻”,我這個小嘴“麻雀”,在數學學習中沒有多大的優勢,數學最后一道題對我而言難度就挺大的,于是決定放棄了這個難啃的“地瓜”,并立刻回頭檢查前面已經做過的試題,幸運的是檢查出做錯的一道選擇題;蛟S,正是由于這樣量力而行的戰術,我保住了“芝麻”基礎題,只在較難題目上失分,其他題全部做對,做到了數學考試的超水平發揮。

          初二數學學習方法18

          要想學好數學,必須多做練習,但有的同學多做練習能學好,有的同學做了很多練習仍舊學不好,究其因,是“多做練習”是否得法的問題。

          我們所說的“多做練習”,不是搞“題海戰術”。后者只做不思,不能起到鞏固概念,拓寬思路的作用,而且有“副作用”:把已學過的知識攪得一塌糊涂,理不出頭緒,浪費時間又收獲不大,我們所說的“多做練習”,是要大家在做了一道新穎的題目之后,多想一想:它究竟用到了哪些知識,是否可以多解,其結論是否還可以加強、推廣,等等,還要真正掌握方法,切實做到以下三點,才能使“多做練習”真正發揮它的作用。

          1.必須熟悉各種基本題型并掌握其解法。

          課本上的每一道練習題,都是針對一個知識點出的,是最基本的題目,必須熟練掌握;課外的習題,也有許多基本題型,其運用方法較多,針對性也強,應該能夠迅速做出。

          許多綜合題只是若干個基本題的有機結合,基本題掌握了,不愁解不了它們。

          2.在解題過程中有意識地注重題目所體現的出的思維方法,以形成正確的思維定勢。

          數學是思維的世界,有著眾多思維的技巧,所以每道題在命題、解題過程中,都會反映出一定的思維方法,如果我們有意識地注重這些思維方法,時間長了頭腦中便形成了對每一類題型的“通用”解法,即正確的思維定勢,這時在解這一類的題目時就易如反掌了;同時,掌握了更多的思維方法,為做綜合題奠定了一定的基礎。

          3.多做綜合題。

          綜合題,由于用到的知識點較多,頗受命題人青睞。

          做綜合題也是檢驗自己學習成效的有力工具,通過做綜合題,可以知道自己的不足所在,彌補不足,使自己的數學水平不斷提高。

          初中溫馨建議:“多做練習”要長期堅持,每天都要做幾道,時間長了才會有明顯的效果和較大的收獲。

        【初二數學學習方法】相關文章:

        初二數學的學習方法01-15

        初二數學復習學習方法05-24

        初二數學學習方法07-20

        初二數學學習方法歸納07-28

        初二數學學習方法指導優秀09-28

        初二數學復習學習方法3篇[優秀]09-22

        初二數學學習方法合集15篇05-23

        初二學生學習方法11-28

        初二學生的學習方法03-07

        初二學習方法總結03-07

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>