數學學習方法總結(15篇)
總結是指對某一階段的工作、學習或思想中的經驗或情況加以總結和概括的書面材料,它可以幫助我們有尋找學習和工作中的規律,讓我們一起來學習寫總結吧?偨Y怎么寫才不會千篇一律呢?以下是小編幫大家整理的數學學習方法總結,希望能夠幫助到大家。
數學學習方法總結1
數學是研究現實世界的空間形式和數量關系的科學。數學學習是中小學生增長學習能力和創造能力的廣闊天地。而數學學習方法指導是教育者通過一定的教育途徑對學習者進行學習方法的傳授、誘導、診治,使學習者掌握科學的學習方法并靈活運用于學習之中,逐步形成較強的自學能力的方法。實踐證明忽視了“學”,“教”就失去了針對性,教學的高低,在很大程度上取決于學生的學習態度和學習方法。有些學生因不會學習或學習方法不當而成績逐漸下降,久而久之失去學習信心和興趣,開始陷入厭學的困境,這也往往是學生明顯出現“兩極分化”的原因。因此重視對學生數學學習方法的指導是非常必要的。在新課程背景下,如何讓初一新生感到數學好學,把學數學當成一種樂趣,真正做初中數學的小主人。
首先同學們要學會學習,要圍繞老師講述展開聯想,理清教材文字敘述思路,聽出教師講述的重點難點,跨越聽課的學習障礙,不受干擾,在理解基礎上做點筆記。其次要先預習后聽課,先看書后做作業,先理解再輸入大腦識記。再次要會制定學習計劃,會利用時間充分學習,會進行學習小結,會提出問題進行討論學習,會閱讀參考資料擴展學習。還要調試學習心理問題,剛開始學習要有決心,碰到困難有信心,研究問題要專心,反復學習有耐心,向別人學習要虛心。還要開動腦筋,積極思考,多方面增加感性知識,熟記一些必需知識,發揮聽覺容量的最大潛力。本人想就以下幾個問題從四個方面做些探討。
一、指導學生讀
目前初中新生學習數學存在一個嚴重的問題就是不善于讀數學書,他們往往是死記硬背。比如在學習平方根概念時,同學們都知道“一般地,如果一個數的平方等于a,那么這個數叫做a的平方根!薄耙粋正數有正、負兩個平方根,它們互為相反數;零的平方根是零;負數沒有平方根!笨墒窃谧雠袛囝}時,4是16的平方根( );16的平方根是4( )。這兩道判斷題前面一道總是做不對,后面一道倒是都能做全對。因為他們更熟悉“一個正數有兩個平方根,卻不能很好的理解平方根的概念,就因為沒好好讀懂平方根概念,這使初一新生自學能力和實際應用能力得不到很好的訓練。因此,重視讀法指導對提高初中新生的學習能力是至關重要的。在教學過程中,教師應指導學生學會讀書的方法,做到眼到、口到、心到、手到。新學一個章節內容,先粗粗讀一遍,即瀏覽本章節所學內容的枝干,然后一邊讀一邊勾,粗略懂得教材的內容及其重點、難點所在,對不理解的地方打上記號。然后細細的讀,即根據每章節后的學習要求,仔細閱讀教材內容,理解數學概念、公式、法則、思想方法的實質及其因果關系,把握重點、突破難點。再次帶著研究者的態度去讀,即帶著發展的觀點研討知識的來龍去脈、結構關系、編排意圖,并歸納要點,把書讀“懂”,并形成知識網絡,完善認識結構,當學生掌握了這三種讀法,形成習慣之后,就能從本質上改變其學習方式,提高學習效率了。
二、指導學生聽
初中新生往往對課程增多、課堂學習容量加大不適應,顧此失彼、精力分散,使聽課效率下降,因此,重視聽法指導,使他們學會聽,是提高學習效率的關鍵。 數學教學中,首先應培養學生學習思想專注、專心聽講,激活其原認識結構,并使學生的信息接受與教師的信息輸出協調一致,從而獲得最佳學習效果。其次,要培養學生會聽,注意聽教師每節課強調的學習重點,注意聽對定理、公式、法則的引入與推導的方法和過程,注意聽對例題關鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節課最后的小結,這樣,讓學生抓住重、難點,沿著知識的發生發展的過程來聽課,不僅能提高聽課效率,而且能使其由“聽會”轉變為“會聽”。
三、指導學生思考
數學學習是學習者在原有數學認知結構基礎上,通過新舊知識之間的“同化”或“順應”,形成新的數學認知結構的過程。由于這種“同化”或“順應”的工作最終必須由每個學習者相對獨立地完成。因此,在教學過程中老師對學生要進行思法指導,教師應著力于以下幾點:①從學生思維的“最近發展區”入手來開展啟發式教學,培養學生積極主動思考,使學生會思考。②從創設問題情境來開展探索式教學,培養學生追根究底的思考習慣,使學生學會深思;③從挖掘“問題鏈”來開展變式訓練,培養學生觀察、比較、分析、歸納、推理、概括的能力,使學生學會善思;④從回顧解題策略、方法的優劣來開展評價,培養學生去分析,使學生學會反思。還有就是我們在教學過程中還應善于暴露思維過程,留下一定的思維時間與空間,使學生“思在知識的轉折點、思在問題的疑難處、思在矛盾的解決上,思在真理的探索中”,使學生達到融會貫通的境界。
四、指導學生寫
初一新生在解題書寫上往往存在著條理不清,邏輯混亂等問題。比如在學習乘、除、乘方的混合運算的運算順序時,下列這些錯誤學生很容易犯,(–3)2=–32,(2×3)2=2×32,(34)2=324等等。還有在學習有理數的混合運算時會出現這樣的情況,8-8×(32)2=0×94=1,這主要是我們在教學中不大重視對學生進行寫法指導。在教學中老師要及時糾正學生易犯的錯誤。比如①要教會學生將文字語言轉化為數學符號語言,還要注意數學符號中數學演算的前提條件;②要將學生在推理的同時學會書寫表達,讓學生在反復訓練中熟練掌握常用的書寫格式;③要訓練學生根據已知條件來分析作圖,正確地將文字語言轉化為直觀圖形,以便更好的利用數形結合解決問題。這樣經過多形式、多層次去強化訓練,讓學生過好分析關、書寫關,使學生在注意嚴謹性、邏輯性的過程中形成正確的書寫習慣。
五、指導學生記
教學生如何克服遺忘,以科學的方法記憶數學知識,對學生來說是很有益處的。初中新生由于正處在初級的邏輯思維階段,識記知識時機械記憶的成分較多,理解記憶的成分較少,這就不能適應初中學生的新要求。因此,重視對學生進行記憶方法指導,這是初中數學教學的必然要求。教學中,首先要重視改革教學方法,拋棄滿堂灌,以避免學生“消化不良”,其次要善于結合數學實際,教給學生相應的方法。比如①理解記憶法,因為理解的東西才能記得準,記得牢,所以必須“先懂后記”。② 簡化記憶法,簡化記憶方法分兩類,一類是把文字“濃縮”之后記憶,另一類是用字母符號表達抽象記憶。③形象記憶法,內容形象、直觀、記憶就深刻、難忘,把知識形象化能幫助記憶。④對比記憶法,“有對比才有鑒別”把相類似的問題放在一起找出區別與聯系,分清異同,增強記憶效果。⑤口訣記憶法,將數學知識編成“順口溜”,生動有趣,印象深刻,不易遺忘。⑥系統記憶法,建立一個完整的知識體系,便于整體上掌握知識,可用關系圖來幫助記憶。此外,我們還應該讓學生明確各種記憶方法。
總之,對初中新生數學學習方法的指導,必須與教學改革同步進行,協調開展,持之以恒。要力求做到轉變思想與傳授方法結合,課上與課下結合,學法與教法結合,教師指導與學生探求結合,統一指導與個別指導結合,建立縱橫交錯的學法指導網絡,促進學生掌握正確的學習方法.同時要理論聯系實際,因人而異,因材施教,充分調動學生的學習積極性。
數學學習方法總結2
【一、及時回憶】
如果等到把課堂內容遺忘得差不多時才復習,就幾乎等于重新學習,所以課堂學習的新知識必須及時復習。
可以一個人單獨回憶,也可以幾個人在一起互相啟發,補充回憶。一般按照教師板書的提綱和要領進行,也可以按教材綱目結構進行,從課題到重點內容,再到例題的每部分的細節,循序漸進地進行復習。在復習過程中要不失時機整理筆記,因為整理筆記也是一種有效的復習方法。
【二、重復鞏固】
即使是復習過的內容仍須定期鞏固,但是復習的次數應隨時間的增長而逐步減小,間隔也可以逐漸拉長。可以當天鞏固新知識,每周進行周小結,每月進行階段性總結,期中、期末進行全面系統的學期復習。從內容上看,每課知識即時回顧,每單元進行知識梳理,每章節進行知識歸納總結,必須把相關知識串聯在一起,形成知識網絡,達到對知識和方法的整體把握。
【三、合理安排】
復習一般可以分為集中復習和分散復習。實驗證明,分散復習的效果優于集中復習,特殊情況除外。分散復習,可以把需要識記的材料適當分類,并且與其他的學習或娛樂或休息交替進行,不至于單調使用某種思維方式,形成疲勞。分散復習也應結合各自認知水平,以及識記素材的特點,把握重復次數與間隔時間,并非間隔時間越長越好,而要適合自己的復習規律。
【四、突破重點難點】
對所學的素材要進行分析、歸類,找出重、難點,分清主次。在復習過程中,特別要關注難點及容易造成誤解的問題,應分析其關鍵點和易錯點,找出原因,必要時還可以把這類問題進行梳理,記錄在一個專題本上,也可以在電腦上做一個重難點“超市”,可隨時點擊,進行復習。
【五、效果檢測】
隨著時間的推移,復習的效果會產生變化,有的淡化、有的模糊、有的不準確,到底各環節的內容掌握得如何,需進行效果檢測,如:周周練、月月測、單元過關練習、期中考試、期末考試等,都是為了檢測學習效果。檢測時必須獨立,完成,保證檢測出的效果的真實性,如果存在問題,應該找到錯誤的根源,并適時采取補救措施進行校正。目前市場上練習冊多如牛毛,請在老師的指導下選用。
【數學學習方法推薦】
高一數學與初中數學的區別是概念多并且較抽象,學起來“味道”同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義并掌握各種等價的表達方式。例如,為什么函數y=f(x)與y=f-1(x)的圖象關于直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什么當f(x-1)=f(1-x)時,函數y=f(x)的圖象關于y軸對稱,而y=f(x-1)與y=f(1-x)的圖象卻關于直線x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關系的區別,兩者很容易混淆。
數學學習方法總結3
數學,數學是讓很多理科和文科學生頭疼的科目。我也不好把握它應該怎么學習,但是最近我確實償到了學習的快樂。我是這樣學習的。
數學重要的課本的見解和例題,大家要把握好這個點,一定要注意課本,就是說你剛剛學完一節,作習題時如果沒有思路,你就要好好的回憶課本講了什么,要做到課本與習題的巧妙結合。
建議高一高二的同學,分幾步走。
要課前預習,很多書都這么說,可是很多同學都不屑,但是我要告訴你,如果您能落實好預習,你的數學就可以好一半,你預習時的態度要端正,不是看一遍書就完事,而是要認真的思考,看看講解的內容和例題是怎么聯系的。然后看懂后就做書上習題,不要小看書的習題,進幾年高考題目有好多都是根據書的習題改的,這個要做好的。一定要做出數來,對照答案。
其次要上課認真聽講,看看老師是怎么演繹數學的,看看老師的說法和你預習時的一樣不,最好記下老師的例題,這例題絕對經典,可以當作對象研究的。
最后就是要課下的習題,認真的完成老師布置的作業,體會課上所講的內容,不會的及時問老師。還有就是課外的練習冊最好別買,因為根據我上了高三的經驗,買的就是浪費的,千萬別買。∪绻阌X得沒有事情做了,那么你就學習英語和語文吧!這兩科如果學好了,高三都可以不用復習的。
但是大家要記住,數學必須把問題全部落實,不能拖。還要和老師及時的溝通哦。
數學復習必須掌握的3個方法
數學是三大主科之一,所占分值比例大,可以說是在考試中最容易拿分也可以說最容易失分的一個科目,讀題粗心大意的學生,往往就丟失不必要的分數,并且這個科目考生也最忌心浮氣躁,需要靜下心來 高一,仔細閱題,由易而難做下來。數學是一門講理的學科,具有很強的邏輯性。相對于初中數學來說,高中數學明顯難了很多。因此,很多原本在初中數學成績很好的同學,到了高中就明顯感到吃力。那么針對20xx年高考數學學生該如何應對,考前需要做哪些準備?解題時需要掌握哪方面技巧,才會讓自己不易失分?
數學考試答題技巧,可以采用數形結合、直接對照法、篩選法等。
數形結合法:“數”與“形”是數學這座高樓大廈的兩塊最重要的基石,二者在內容上互相聯系、在方法上互相滲透、在一定條件下可以互相轉化,而數形結合法正是在這一學科特點的基礎上發展而來的。在解答選擇題的過程中,可以先根據題意,做出草圖,然后參照圖形的做法、形狀、位置、性質,綜合圖象的特征,得出結論。用這種方法,既方便解題又容易讓人明白。
數學學習方法總結4
高中快速提高數學成績的方法
1、基礎知識整理
對于基本概念,基本公式,要熟記于心,然后是揣摩總結各知識點之間的關系,形成自己對于知識的理解,在心中形成自己的知識脈絡,理清基礎知識間的聯系。
2、扎實練習基礎知識
練習是必不可少的,但是一定得從基礎,從課本開始,課本的練習以及例題是練習的根本,在最開始時一定得將基礎練習做好!甚至需要將課本中的例題和練習舉一反三!這樣才能實現對基礎知識的鞏固!
3,專攻知識遺漏,專項練習提高成績
專項練習的目的在于提高,在于清理知識的遺漏,對于經常做也不會的或者也出錯的知識,那么不妨花費一段時間來專項突破,這個方法對于提高成績還是非常快速的。
4,綜合提高高一知識掌握
對于成績的提高必然是對于全套試題的把握,當基礎練好,專項練透,綜合試卷必然是必須過關的,綜合試卷是對做題者的綜合能力的考察,通過練習把做題時間,難易分配,即時思維,臨?穗y等限時條件下做題效率提高!
提高工作數學成績的方法
第一、吃苦。學習是孩子自己的事情,別人幫不了你。而且學習本身就是一個很苦的事情,所以,要自己做好吃苦的準備,刻苦鉆研,每天努力。
第二、精讀教材。現在很多孩子學習成績不理想,有一個很大部分的原因,就是他自己連教材是什么樣子的,都沒有認真看過。學校老師,可能上課也是用的導學案,然后孩子課前也沒有預習,課后也沒有認真的精讀教材,進行內容消化。
第三、上課專心聽講,和課后整理筆記。這點有多重要,就不多講了。為了提高上課效率,課前一定要認真的預習功課。課堂上,不要猛抄筆記,錯過老師的解題思路和總結,就得不償失。筆記是都是課后再去整理和總結的。
第四、獨立做題,勤于思考。做題一定要獨立完成,不要依賴別人,不要依賴搜題軟件?梢苑瓡,找例題。要輕語思考和總結,把類似的相關題型,歸納總結起來。
第五、不遺留問題。每天遇見的問題,一定要想辦法解決,多請教同學和老師,要多問幾個為什么,多和同學交流學習上的想法,有自己的觀點和分歧的時候,要勇于表達。
高中數學成績提升的方法
1。平時練習不要翻書
為什么有的孩子在平時完成作業時能夠完成得很好,但是到了考試的時候成績就會比較不理想?這就是因為平時回家練習的時候翻書了。做題的時候翻書會導致我們對一些知識點掌握不牢固,比如一些概念和定義等內容。長此以往,我們就沒辦法通過作業了解我們有那些知識點沒有掌握好,這樣自然就沒有好成績了。
2。學會整理錯題
錯題本是學生在學習的過程中,把自己做過的考試題、模擬題及其他習題中的錯題整理成冊,便于自我發現薄弱環節,進而進行針對訓練以提升成績的學習工具。所以學會整理錯題很重要。那么該怎么整理錯題呢?
(1)要分別類整理
將所有錯題整理,分請錯誤的原因。如:概念模糊類、審題錯誤類、記憶錯誤、理解錯誤、計算錯誤等,將各題注明屬于某一章某一節。這樣分類便于按原因查找原因,給今后復習帶來方便。
。2)不要只記錯題
我們在記錯題的時候,不光要記錯題,還要寫下自己錯誤的原因,已經正確的解題過程及答案。對于部分題型,我們還可以記下不一樣的解題思路。
。3)舉一反三
類似的題目,可以摘寫在旁邊,將解題思路寫清楚。拓展延伸,將其難度延伸的題目也要摘寫下來,好相互比較一下。這樣達到具舉一反三,觸類旁通的效果。
3。學會整理學習資料
在學習過程中,老師會發很多單頁的學習資料,這些資料大多數都是老師們針對一個單元中易錯的問題內容等做的整理。還有一些其他的學習資料,都是容易損壞、遺失的。如果沒有一個整理學習資料的習慣,那么這些學習資料到了復習的時候就找不到了,平時養成整理資料的習慣,到了初高中以后,面對更多的學習資料,會有很大幫助。
培養習慣是個長期的過程,一個好習慣的養成,往往需要漫長的時間。由于人們往往具有惰性,在一段時間的訓練之后,如果稍加放松,孩子就會出現反復。但是好的學習習慣能夠幫助孩子更好地學習,所以家長們一定要督促孩子養成好的學習習慣。
數學學習方法總結5
第一,重視聽講。在課堂上,老師講授的一般都是新的知識內容,所以要緊跟著老師的思路走,積極的開展自己的思維,看看老師講的解題思路與自己所想的有什么不同,通過思考進一步的去提高自己的數學能力。
第二,及時復習。復習的時候要把老師當天講的內容都消化掉,做到不堆積問題,把老師在課上講的知識點都去回顧一遍,熟練掌握公式的推理過程,盡量通過自己的記憶去回顧,實在搞不懂就去翻下書。
第三,多做題。學好數學就必須多做題,這是為了掌握各種不同題型的解題思路,剛開始可以不用那么著急,可以從簡單的入手,主要以課本的習題為主,如果課本里的習題能解答好,就是把基礎打扎實。
基礎知識牢固了,就可以去找一些課外的習題,或者試題來練練手,多幫助自己開拓思維,尋找新思路,提高對解決問題的分析能力,題目做的多了,多多少少就能知道一些解題規律,也就能總結出一套自己的解題方法。
數學學習方法總結6
1.先看專題一,整數指數冪的有關概念和運算性質,以及一些常用公式,這公式不但在初中要求熟練掌握,高中的課程也是經常要用到的。
2.二次函數,二次方程不僅是初中重點,也是難點。在高中還是要學的內容,并且增加了一元二次不等式的解法,這個就要根據二次函數圖像來理解了!解不等式的時候就要從先解方程的根開始,二次項系數大于0時,有個口訣得記下:“大于號取兩邊,小于號取中間”。
3.因式分解的方法這個比較重要,高中也是經常用的,比如證明函數的單調性,常在做差變形是需要因式分解,還有解一元多次方程的時候往往也先需要分解因式,之后才能求出方程的根。
4.判別式很重要,不僅能判斷二次方程的根有幾個,大于零2個根;等于零1個根;小于零無根。而且還能判斷二次函數零點的情況,人教版必修一就會學到。集合里面有許多題也要用到。
數學學習方法總結7
一、要打好基礎:數學是一門系統性強,前后內容聯系十分緊密的學科。就學校老師教學的內容而言,前面的內容往往是后面學習必備的基礎,前面沒有學好,肯定影響后面知識的學習。假如整數四則計算都不會,怎么去進行小數計算?一步解答的應用題都不會,怎么去解答兩步或多步解答的綜合應用題目呢?……因此,學習數學必須遵循從基礎學起,循序漸進,逐步擴展的原則。如果你在以前的數學基礎沒有打好,那必須把以前欠缺的知識補起來,這一點非常必要。就如同建造高樓大廈,你把根基打好了,才能夠在上面建造一層、二層、三層……。當然要補上所欠缺的基礎知識,是很不容易的;镜挠嬎(如口算、筆算)、基本概念、基本的數量關系、基本的圖形知識……,還有最基本的數學思想和解決數學問題的基本方法都是基礎。我們首先要弄清楚欠缺在哪里?然后才能有針對的進行補救。
二、要學會傾聽。數學是一門抽象的學問,思維性和邏輯性很強,是需要同學們動腦子,下功夫去學的科目。所以上課思想不要開小車,尤其是老師在講解、分析,同學們在回答問題的時候,你要排除一切干擾,做到全神貫注的聽,隨著老師的講解去思維,去發現,去拓展。只有你聽明白了老師和同學的話,你也才能夠分析判斷別人的話是否正確,才能夠學到老師和別的同學分析問題的方法。如:分析數量關系,尋求解決問題途徑時,就如警察破案,步步緊逼,環環緊扣。老師在講解時的每一步,都是下一步分析的基礎,如果你上一步沒有搞清楚,就會影響下一步的分析和理解。由此說明認真聽講是多么的重要。另外,學會傾聽也是一種禮貌,一種尊重,更是一種學習精神。
三、要重視解決問題的方法和過程。學習數學知識,既要重視做題的結果,更要重視解決問題的方法和過程。重結果只會導致模仿、死記硬背、生搬硬套,若遇到陌生題型往往就會束手無策。只有注重解題過程和解題方法的同學,思維才能夠得到真正的鍛煉,才會變得越來越聰明。而實際上有些同學在學習中,只注重某道題目結果等于幾,而不想搞清楚為什么等于幾?比如一些圖形方面的計算公式,我們不但要記住它,更要理解這些公式是怎樣推導出來的,采用什么方法推倒出來的?這樣我們才能夠靈活運用,融會貫通。就算忘記了公式我們可以再推導,再總結出來。我們的分析和推理能力才能夠提高。
四、要做適當的練習。學習數學離不開做題?鬃诱f:“學而時習之”、“溫故而知新”。意思是:只有時常溫習過去所學的知識,并整理而找出頭緒,加以鞏固,才能不斷吸收和了解新的東西。不做適當的練習,學到的知識就沒有辦法鞏固。比如我們學習了圓面積的計算,我們也理解了公式推導的過程,但沒有及時去練習,那么學會的計算方法很快可能就忘記了。所以為了更好的掌握舊知識和獲得新的知識,做適當的練習題,是很有必要的。
五、要敢于提出問題和自己的見解。不管是課本上的知識,還是老師講的,我們要大膽提出與眾不同的看法和問題。不一定老師講的就是最好的方法,我們應該敢于和老師挑戰,敢于和教材挑戰。當然,不思維和不善于思考的人是做不到這一點的。比如在學習用比的知識解決實際問題的時候,你還可以想能不能用別的知識去解答呢?然后你就會發現用學過的整數除法知識或變換為分數知識都可以去解決這種問題。從而你一定會為你的解題方法而得意吧。
數學的學習方法就為大家整理到這里了,希望大家在學習上養成善于總結的好習慣。
數學學習方法總結8
一、數學分析內容簡介
數學分析內容有實數集與函數、數列極限函數極限、函數連續性、導數、微分等。書中內容大都以證明為主,計算部分較少。
二、課前預習
課本中每節的內容構架都是相似的,大都為引言、定理、定理的證明、例題、課后習題。了解了構架。那么我們就應該預習重點部分,在時間充足的的情況下,再看其他未看內容。
引言,不重要,可以瀏覽一下,也可以不看;定理,是核心的內容,不僅看而且要詳細的記住它,所謂詳細的記住是指:把定理的條件不要記錯,這個對證明很有用;接下來是證明,證明影響你對定理的理解程度和運用的熟練程度。可先了解證明思路證明中的計算可以忽略,這樣在老師的講解下就可以明白;最后是例題和習題,例題是對定理最簡單最貼切的應用,所以課前掌握最好,習題可看可不看。
三、記錄筆記
在緊張的課堂學習中,要記好自己的筆記讓它清晰工整是不容易的。因為你還在用心聽老師講課,所以要有方法。
首先,學會省略。減輕課堂負擔,在課后補充。比如:定理,你可以把定理的內容在課本上畫下來,在筆記中留出空白。用這段時間理解并記憶定理。計算也可以省略,留到課下自己計算。
其次,學會縮寫。在數學分析中,有很多符號語言,比如:∑(加和)∞(無窮大)∵(因為)th(定理)等。
最后,抓住重點記錄。重點可以分為兩部分:一部分是老師上課所說的重點部分,那一定是精華,所以不要錯過;另一部分是自己不懂或難懂的部分,記錄下來,課下反復思考,復習。
四、課后復習
課后復習要從兩方面出發:
一方面是老師要求掌握的內容,這些內容是考試內容,對期末復習打下良好的基礎。
另一方面是自己難以掌握的`內容,這些內容是最容易忘記的也是應用熟練程度最差的。所以也要作為重點復習。
復習要有一定的周期性,不能本周看了,之后就讓它冬眠,這樣大腦會一片空白的?梢愿鶕约旱挠洃浤芰,一星期或兩星期看一次。
五、讀書方法
讀書要有側重點,數學分析中的定理,有的要著重看它的證明方法,他的方法是獨特的,可以給自己以借鑒;有的要著重看定理的內容,它的定理應用,推廣會更多一些;有的當做了解內容,因為它可能是為其它定理作鋪墊的。
其中的例題一定要看,這個會是定理的淺顯應用,對于初學者來說,能夠為以后做難題提供思路和方法。
六、數學分析中的創新與應用
在創新方面,一般是定理推廣,它的推廣會被現實生活中應用的更加廣泛。在應用方面,這個很多,一般是競賽中的應用,比如數學建模。在計算機程序中也有很多應用。
學好數學分析,其天賦是一方面,另一方面就是自己的不斷努力下所積累的做題經驗和邏輯性思維。只有努力才有收獲!
數學學習方法總結9
一、“記錯題法”。學生每人準備一個“記錯本”,把自己平時作業、單元測試或期中、期末考試中出現的錯誤記錄下來,并注明出錯原因,做到有錯必改,以后不再犯類似的錯誤。在實際的學習中,要經常查看這個本子,做到心中有數。
二、“1×5”學習法。做一道題要有做一道題的收獲。反對搞題海戰術。
做一道題,引導學生從五個方面思考:
、龠@道題考查的知識點是什么。
、跒槭裁匆@樣做。
、畚沂侨绾蜗氲降摹
、苓可以怎樣做,有其它方法嗎?
、菀活}多變看看它有幾種變化的形式,把自己當作一個出題者,領會出題人的意圖,看看能不能有其他的解題思路怎么樣。
三、“1×3”糾錯法。
一道錯題,從三個方面分析:
、馘e在哪里。
、阱e的原因是什么。
、鄯鲜裁礂l件,錯誤才能變成正確。
四、“1×3”思考法。
一道對題,從三個方面思考:
、俳忸}的依據是什么。
、谟袥]有別的解法,若有多種解法,哪種解法更佳。
、圻@道題還可以如何變化?
以上“四法”,既適合于學生的學,又適合于教師、家長的教。
數學學習方法總結10
掌握每一個公式定理
做課本的例題,課本的例題的思路比較簡單,其知識點也是單一不會交叉的,如果課本上的例題你拿出來都會做了,說明你已經具備了一定的理解力。
做課后練習題,前面的題是和課本例題一個級別的,如果課本上所有的題都會做了,那么基礎夯實可以告一段落。
進行專題訓練提高數學成績
1。做高中數學題的時候千萬不能怕難題!有很多人數學分數提不動,很大一部分原因是他們的畏懼心理。有的人看到圓錐曲線和導數,看到稍微長一點的復雜一點的敘述,甚至看到21、22就已經開始退卻了。這部分的分數,如果你不去努力,永遠都不會掙到的,所以第一個建議,就是大膽的去做。前面虧欠數學這門學科太多,就算讓它打腫了又怎樣,后面一點一點的強大起來,總有那么一天你去打它的臉。
2。錯題本怎么用。和記筆記一樣,整理錯題不是謄寫不是照抄,而是摘抄。你只顧著去采擷問題,就失去了理解和挑選題目的過程,筆記同理,如果老師說什么記什么,那只能說明你這節課根本沒聽,真正有效率的人,是會把知識簡化,把書本讀薄的。先學學你能思考到答案的哪一步,學著去偷分。當然,因人而異,如果你覺得還有哪些題需要整理也可以記下來。
3。高中數學試卷怎么做?我的習慣是模擬題做專題練習,即我復習三角函數,我就一天做五套卷子的函數,練選擇題,我就刷選擇題。高考卷子則是完全模擬,而且優先挑自己省的以及和自己省相似的卷子模擬,時間的跨度以三年內的為準,因為我當年是課改的第二年,所以第一年的卷子我做的特別細致。
數學學習方法總結11
1.特值檢驗法
對于具有一般性的數學問題,我們在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達到去偽存真的目的。
例:△ABC的三個頂點在橢圓4x2+5y2=6上,其中A、B兩點關于原點O對稱,設直線AC的斜率k1,直線BC的斜率k2,則k1k2的值為
A.-5/4
B.-4/5
C.4/5
D.2√5/5
解析:因為要求k1k2的值,由題干暗示可知道k1k2的值為定值。題中沒有給定A、B、C三點的具體位置,因為是選擇題,我們沒有必要去求解,通過簡單的畫圖,就可取最容易計算的值,不妨令A、B分別為橢圓的長軸上的兩個頂點,C為橢圓的短軸上的一個頂點,這樣直接確認交點,可將問題簡單化,由此可得,故選B。
2.極端性原則
將所要研究的問題向極端狀態進行分析,使因果關系變得更加明顯,從而達到迅速解決問題的目的。極端性多數應用在求極值、取值范圍、解析幾何上面,很多計算步驟繁瑣、計算量大的題,一但采用極端性去分析,那么就能瞬間解決問題。
3.剔除法
利用已知條件和選擇支所提供的信息,從四個選項中剔除掉三個錯誤的答案,從而達到正確選擇的目的。這是一種常用的方法,尤其是答案為定值,或者有數值范圍時,取特殊點代入驗證即可排除。
4.數形結合法
由題目條件,作出符合題意的圖形或圖象,借助圖形或圖象的直觀性,經過簡單的推理或計算,從而得出答案的方法。數形結合的好處就是直觀,甚至可以用量角尺直接量出結果來。
5.遞推歸納法
通過題目條件進行推理,尋找規律,從而歸納出正確答案的方法。
6.順推破解法
利用數學定理、公式、法則、定義和題意,通過直接演算推理得出結果的方法。
7.逆推驗證法
將選擇支代入題干進行驗證,從而否定錯誤選擇支而得出正確選擇支的方法。
8.正難則反法
從題的正面解決比較難時,可從選擇支出發逐步逆推找出符合條件的結論,或從反面出發得出結論。
9.特征分析法
對題設和選擇支的特點進行分析,發現規律,歸納得出正確判斷的方法。例:256-1可能被120和130之間的兩個數所整除,這兩個數是:
A.123,125
B.125,127
C.127,129
D.125,127
解析:初中的平方差公式,由256-1=(228+1)(228-1)=(228+1)(214+1)(27+1)(27-1)=(228+1)(214+1)·129·127,故選C。
10.估值選擇法
有些問題,由于題目條件限制,無法(或沒有必要)進行精準的運算和判斷,此時只能借助估算,通過觀察、分析、比較、推算,從面得出正確判斷的方法。
高中是人生中的關鍵階段,大家一定要好好把握高中,編輯老師為大家整理的高中數學學科十大搶分技巧,希望大家喜歡。
數學學習方法總結12
一、思考:思考是數學學習方法的核心。在學這門課中,思考有重大意義。解數學題時,首先要觀察、分析、思考。思考往往能發現題目的特點,找出解題的突破口、簡便的解題方法。在我們周圍,凡是真正學得好的同學,都有勤于思考,經常開動腦筋的習慣,于是腦子就越用越靈,勤于思考變成了善于思考。我正因為掌握應用了這一方法,所以在全國數學競賽中獲得了武漢市一等獎。
二、動手試一試:動手有助于消化學習過的知識,做到融會貫通。課下,我常常把老師講過的公式進行推導,推導時不要看書,要默記。這樣就能使自己對公式掌握滾瓜爛熟,可為公式變形計算打下扎實的基礎。
三、培養創造精神:所謂創造,就是想出新辦法,做出新成績,建立新理論。創造,就要不局限于老師、課本講的方法。平時,有一些難度高的題目,我在聽懂了老師講的方法后,還要自己去找一找有沒有另外的解法,這樣能加深對題目的理解,能比較幾種解法的利弊,使解題思維達到一個更高的境界。
北師大版四年級數學復習計劃
一、復習指導思想
通過總復習,使學生對本學期所學的知識進行系統整理和復習,進一步鞏固數概念,提高計算能力和解決問題的能力,發展空間觀念、統計觀念,獲得自身數學能力提高的成功體驗,全面達到本學期規定的教學目標。
二、復習內容
大數的認識、角的度量、兩位數乘三位數、除數是兩位數的除法、混合運算及簡便運算、可能性大小及數學好玩
重點:大數的認識、兩位數乘三位數、除數是兩位數的除法。
三、復習形式:
分類復習、綜合復習
四、復習目標:
1、對萬級、億級的數,十進制計數法,用“萬”、“億”作單位表示大數目以及近似數、改寫等知識有進一步的認識,建立有關整數概念的認知結構;
2、復習乘、除法口算,把因數和積的關系、商變化的規律和乘、除法口算結合起來復習,使學生進一步理解口算算理,并靈活運用這些規律進行口算,使口算更正確、快速。
3、復習筆算乘、除法,讓學生說一說進行乘、除法筆算需要注意什么,如因數中間、末尾有0的乘法應注意什么,除法試商、調商的原則是什么等等,會用乘、除法解決簡單的實際問題,通過復習使學生理解估算在解決問題中的必要性,體會估算策略的多樣化。
4、進一步提高用計算器進行大數目計算以及探索規律的操作技能,加深對計算器的認識;
5、掌握直線、射線和線段的特征,認識角,能正確畫出平行線和垂線(過直線外一點和直線上一點),進一步發展空間觀念;
6、對混合運算的運算順序及運用運算律進行簡算。
7、生活中的正負數,及正負數所表示的意義。
8、數學好玩中編碼,數圖形中的規律。
9、通過整理和復習,進一步提高綜合運用所學知識解決實際問題的能力,在解決實際問題的過程中進一步體會數學的價值;
10、通過整理和復習,經歷回顧本學期的學習情況,以及整理知識和學習方法的過程,激發學生主動學習的愿望,進一步培養反思的意識和能力。
五、復習措施:
1、查漏補缺。對本冊教材內容進行系統的歸納整理,理清知識點的聯系,通過對基礎知識的復習和練習,加強學生的記憶,深化認識,使所學的知識內化為學生的知識素養,使學生對知識的掌握理解由感性認識提升到一個理性的認識上來
2、靈活解題,提高綜合運用與解決實際問題的能力。使學生在復習、練習過程中,對知識進行分類、整理,幫助學生找出各知識之間的聯系和解題規律,重新整合,形成一個完整的知識體系,達到舉一反三、能綜合、靈活地運用所學的知識解決簡單實際問題、應用數學的能力。
3、在復習、練習過程當中,注重學生的學習方法、數感和數學思維的梳理和培養,發展學生邏輯思維能力。
4、養成學生認真做題、細心檢查的良好學習習慣,形成良好的數學情操。
5、教會學生復習方法,對所學知識進行全面系統的復習,先全面復習每一單元,再重點復習有關重點內容。
復習作業的設計體現層次性、綜合性、趣味性和開放性,及時批改,及時發現問題,查漏補缺,做到知識天天清。
6、狠抓學生的計算和理解方面的能力。采用多種方法,比如學生出題,搶答,抽查,學生互批等方法,提高學習興趣。
7、提高基礎較好的學生,主要是在課堂提高。對基礎較差的學生采取課堂引導,課后輔導,盡量提高對基礎題的理解掌握。
8、加強補差,將課內課外補差相結合,采用“一幫一”的形式,發動學生幫助他們一起進步,同時取得家長的配合,鼓勵和督促其進步。做到課上多提問,作業多輔導,練習多講解,多表揚、鼓勵,多提供表現的機會。讓他們力爭做到當天的任務當天完成。
9、課堂上教會學生抓住每單元的知識要點,重點突破,加強解決問題能力的培養,并相機進行口算能力的培養。
10、在抓好基礎知識的同時,全面培養學生的數學素養,培養學生總結與反思的態度和習慣,提高學生的學習能力。
數學學習方法總結13
學生升入高中后,能否適應高中數學的學習,是擺在高中新生面前的一個亟待解決的問題,除了學習環境、教學內容和教學因素等外部因素外,同學們應該轉變觀念、提高認識和改進學法,本文就此問題談點看法。
高中數學是初中數學的提高和深化,初中數學在教材表達上采用形象通俗的語言,研究對象多是常量,側重于定量計算和形象思維,而高中數學語言表達抽象,邏輯嚴密,思維嚴謹,知識連貫性和系統性強。
一、正確對待學習中遇到的新困難和新問題
在開始學習高中數學的過程中,肯定會遇到不少困難和問題,同學們要有克服困難的勇氣和信心,勝不驕,敗不餒,有一種“初生牛犢不怕虎”的精神,愈挫愈勇,千萬不能讓問題堆積,形成惡性循環,而是要在老師的引導下,尋求解決問題的辦法,培養分析問題和解決問題的能力。
要提高自我調控的“適教”能力。一般來說,教師經過一段時間的教學實踐后,因自身對教學過程的不同理解和知識結構、思維特點、個性傾向、能力品質、教學觀念、職業經歷等原因,在教學方式、方法、策略的采用上表現出一定的傾向性,形成自己獨特的、鮮明的、一貫的教學風格或特點。作為一名學生,讓老師去適應自己顯然不現實,我們應該根據教的特點,從適應教的目的出發,立足于自身的實際,優化學習策略,調控自己的學習行為,使自己的學法逐步適應老師的教法,從而使自己學得好、學得快。
要將“以老師為中心”轉變為“以自己為主體,老師為主導”的學習模式。數學不是靠老師教會的,而是在老師引導下,靠自己主動思維活動去獲取的,學習數學就是要積極主動地參與教學過程,并經常發現和提出問題,而不能依著老師的慣性運轉,被動地接受所學知識和方法。
要養成良好的個性品質。要樹立正確的學習目標,培養濃厚的學習興趣和頑強的學習毅力,要有足夠的學習信心,實事求是的科學態度,以及獨立思考、勇于探索的創新精神。
要養成良好的預習習慣,提高自學能力。課前預習而“生疑”,“帶疑”聽課而“感疑”,通過老師的點撥、講解而“悟疑”、“解疑”,從而提高課堂聽課效果。預習也叫課前自學,預習的越充分,聽課效果就越好;聽課效果越好,就能更好地預習下節內容,從而形成良性循環。
二、要養成良好的審題習慣,提高閱讀能力
審題是解題的關鍵,數學題是由文字語言、符號語言和圖形語言構成的,拿到目要“寧停三分”,“不搶一秒”,要在已有知識和解題經驗基礎上,譯字逐句仔細審題,細心推敲,切忌題意不清,倉促上陣,審數學題有時須對題意逐句“翻譯”,將隱含條件轉化為明顯條件;有時需聯系題設與結論,前后呼應挖掘構建題設與目標的橋梁,尋找突破點,從而形成解題思路。
要養成良好的演算、驗算習慣,提高運算能力。學習數學離不開運算,初中老師往往一步一步在黑板上演算,因時間有限,運算量大,高中老師常把計算留給學生,這就要同學們多動腦,勤動手,不僅能筆算,而且也能口算和心算,對復雜運算,要有耐心,掌握算理,注重簡便方法。
要養成良好的解題習慣,提高自己的思維能力。數學是思維的體操,是一門邏輯性強、思維嚴謹的學科。而訓練并規范解題習慣是提高用文字、符號和圖形三種數學語言表達的有效途徑,而數學語言又是發展思維能力的基礎。因此,只有以本為本,夯實基礎,才能逐步提高自己的思維能力。
解完題目之后,要養成不失時機地回顧下述問題:解題過程中是如何分析聯想探索出解題途徑的?使問題獲得解決的關鍵是什么?在解決問題的過程中遇到了哪些困難?又是怎樣克服的?這樣,通過解題后的回顧與反思,就有利于發現解題的關鍵所在,并從中提煉出數學思想和方法,如果忽視了對它的挖掘,解題能力就得不到提高。因此,在解題后,要經常總結題目及解法的規律,只有勤反思,才能“站得高山,看得遠,駕馭全局”,才能提高自己分析問題的能力。
三、要養成糾錯訂正的習慣,提高自我評判能力
要養成積極進取,不屈不撓,耐挫折,不自卑的心理品質,對做錯的題要反復琢磨,尋找錯因,進行更正,養成良好的習慣,不少問題就會茅塞頓開,割然開朗,迎刃而解,從而提高自我評判能力。
要養成善于交流的習慣,提高表達能力。在數學學習過程中,對一些典型問題,同學們應善于合作,各抒己見,互相討論,取人之長,補己之短,也可主動與老師交流,說出自己的見解和看法,在老師的點撥中,他的思想方法會對你產生潛移默化的影響。因此,只有不斷交流,才能相互促進、共同發展,提高表達能力。如果固步自封,就會造成鉆牛角尖,浪費不必要的時間。
“學而不思則罔,思而不學則貽”。在學習數學的過程中,要遵循認識規律,善于開動腦筋,積極主動去發現問題,進行獨立思考,注重新舊知識的內在聯系,把握概念的內涵和外延,做到一題多解,一題多變,不滿足于現成的思路和結論,善于從多側面、多方位思考問題,挖掘問題的實質,勇于發表自己的獨特見解。因為只有思索才能生疑解疑,只有思索才能透徹明悟。一個人如果長期處于無問題狀態,就說明他思考不夠,學業也就提高不了。
每學完一節一章后,要按知識的邏輯關系進行歸納總結,使所學知識系統化、條理化、專題化,這也是再認識的過程,對進一步深化知識積累資料,靈活應用知識,提高概括能力將起到很好的促進作用。15、要養成做筆記的習慣,提高理解力。為了加深對內容的理解和掌握,老師補充內容和方法很多,如果不做筆記,一旦遺忘,無從復習鞏固,何況在做筆記和整理過程中,自己參與教學活動,加強了學習主動性和學習興趣,從而提高了自己的理解力。
總之,同學們要養成良好的學習習慣,勤奮的學習態度,科學的學習方法,充分發揮自身的主體作用,不僅學會,而且會學,只有這樣,才能取得事半功倍之效。
數學學習方法總結14
一、筆記紙——輕松做到沒有遺漏
做到知識點和習題類型沒有遺漏,最好的辦法就是把他們集中起來,按照一定的順序和思路存放,其載體一要滿足內容的不斷補充,二要方便查閱。筆記紙是最合適的工具,構造:普通的活頁紙背面左側邊緣布了一個帶拉手的雙面膠條。通過簡單操作,即可粘貼到書縫中,相當于給書加了一頁。筆記紙的使用要掌握以下技巧:
1、建目錄。
一本教材大約包含十章左右,每章少則幾頁,多則十幾頁,包含著若干個大標題,而每個大標題又包含若干個小標題,每個小標題又包含著若干個知識點。第一遍通讀的時候,按照章節,把標題和知識點摘錄出來,寫入筆記紙,粘到章節的前面。編這樣一個目錄,所有東西就一目了然,不僅能夠找到所有的知識點,更幫助你清楚的認識知識間的關系,保證你在知識的海洋中永遠不會迷失方向。
2、勤總結。
把每章的重點、難點、常考題型等,全部按照一定順序記錄到筆記紙上,粘到對應章節中間。在讀書時,要對每個段落進行標記,比如“已經理解,不用再看”、“此題簡單、不用再做”等等,這樣,復習的時候,目標明確,避免胡子眉毛一把抓,避免了時間的浪費,自然提高了效率。
3、大盤點。
建目錄是對每一章的盤點,大盤點則是當學完多章或者整本書的時候,對整本書進行的盤點,以明確各章在整本書中的位置和解決針對多章知識點的綜合應用的題目。此外,還要把各章中相同或相近的內容進行橫向盤點,比如把數學的公式、定理、公理等分別盤點一次,這樣能夠方便理解和記憶,是很有用處的。記錄這些內容的筆記紙,要粘在教材的目錄位置,使方便查閱。
4、常補充。
把課堂上老師補充的內容、自己做題時發現的新知識點、新的題型、解題心得等補充到相應章節處,不斷的充實和完善自己的知識庫。
通過以上的付出,能夠做到對所學課程的所有知識都有清晰的認識,不僅能夠認識每一個知識點,還能認識到知識點間的關系,能夠綜合運用多個知識點解題,解題的時候,知道此題是什么類型,考察的是哪個或哪幾個知識點,在教材中的什么位置,自己是否掌握等等,真正做到沒有遺漏。
二、自檢本——輕松做到真正掌握
做到真正掌握,保證需要記憶的知識點都記住了、做過的題目考試的時候肯定能做對,最好的辦法不是多記幾次、多做幾遍,而是在考試之前,先自己考自己,確認自己的學習成果。自檢本是最合適的工具,構造:每本若干組,每組三頁,第一頁為普通紙,第二、三頁為無碳復寫紙。抄寫題目用復寫模式,墊板放在第三頁后,在第一頁書寫后,第二、三頁也會有題目;寫答案、解題思路和答題用非復寫模式,把墊板依次放在第一、二、三頁后,書寫內容互不影響。自檢本的使用要掌握以下技巧:
1、自檢知識點記憶成果。
自己動手,把每個知識點都變成考題,逐個檢查自己的掌握情況。舉例說,當你記憶單詞時,復寫模式下,把中文寫在第一頁,然后在非復寫模式下,把英文抄在中文的后面。記憶過程中和過后,對照第二頁,在草稿紙上默寫,完畢后與第一頁的答案對照,并在第二頁上標記,對的打√,錯的打×,不太熟練的打△,下次記憶時,只針對打×和△的,如此反復,直到全部搞定為止。這樣做的好處,一是避免在已經會的知識上面浪費時間,二是找到不會的知識,重點解決。
2、錯題、典型考題自檢。
針對自己在以前考試中做錯的題、典型考題和自己認為掌握的不好的考題,復寫模式下,在第一頁書寫題目,在非復寫模式下,在第一頁寫正確答案,在第二頁寫錯誤答案及原因分析,練習之后,參看第三頁的題目,在草稿紙上解答,完畢后與第一、二頁兩種對、錯答案對照,明確自己的效果,并在第三頁題目下方標記,寫上如“完全會了,不用再答”、“X月X日做了一遍,不熟,仍需再做“、”仍然不會、重點學習“等等,如此反復,直到全部搞定為止。
數學學習方法總結15
數學分析是基礎課、基礎課學不好,不可能學好其他專業課。工欲善其事,必先利其器。這門課就是器。學好它對計算科學專業的學生都是極為重要的。這里,就學好這門課的學習方法提一點建議供同學們參考。
1.提高學習數學的興趣
首先要有學習數學的興趣。兩千多年前的孔子就說過:“知之者不如好之者,好之者不如樂之者!边@里的“好”與“樂”就是愿意學、喜歡學,就是學習興趣,世界知名的偉大科學家、相對論學說的創立者愛因斯坦也說過:“在學校里和生活中,工作的最重要動機是工作中的樂趣!睂W習的樂趣是學習的主動性和積極性,我們經常看到一些同學,為了弄清一個數學概念長時間埋頭閱讀和思考;為了解答一道數學習題而廢寢忘食。這首先是因為他們對數學學習和研究感興趣,很難想象,對數學毫無興趣,見了數學題就頭痛的人能夠學好數學,要培養學習數學的興趣首先要認識學習數學的重要性,數學被稱為科學的皇后,它是學習科學知識和應用科學知識必須的工具。可以說,沒有數學,也就不可能學好其他學科;其次必須有鉆研的精神,有非學好不可的韌勁,在深入鉆研的過程中,就可以領略到數學的奧妙,體會到學習數學獲取成功的喜悅。長久下去,自然會對數學產生濃厚的興趣,并激發出學好數學的高度自覺性和積極性。用興趣推動學習,而不是用任務觀點強迫自己被動地學習數學。
2.知難而進,迂回式學習
首先要培養學習數學分析的興趣和積極性,還要不怕挫折,有勇氣面對遇到的困難,有毅力堅持繼續學習,這一點在剛開始進入大學學習數學分析時尤為重要。
中學數學和大學數學,由于理論體系的截然不同,使得同學們會在學習該課程開始階段遇到不小的麻煩,這時就一定得堅持住,能夠知難而進,繼續跟隨老師學習。
學習數學分析時要注意數學分析和高等數學要求不同的地方,否則你學習數學分析就與高等數學沒有什么區別了;而且高等數學強調的是計算能力,數學分析強調的是分析的能力,分析的能力沒有學到,就談不上學好了數學分析。學好數學分析課程還有一個重要的原因是新生們體會不到的,數學分析的知識結構系統性和連續性很強,這些知識學得不扎實,肯定要影響后面知識的學習。同時將來考碩士,還是要考這門課程。如果大學第一年不把這門課程學好,將來可就難了。剛開始學習數學分析,會感覺很暈。對于老師所講的知識,雖然表面上能聽懂,但卻不明白知識背后的真正原因,所以總是感覺學到的東西不實在。至于做題就更差勁了,課后習題都沒幾個會做的。其實感覺暈是很正常的,而且還得要暈上幾個月才可能就會好的。所以要硬著頭皮跟著老師學了下來。雖然感覺還是不太懂,雖然做作業仍然感覺很費勁,但始終不要放棄,這種狀態是學習數學分析的一個必經之路,因此必須克服這個困難才能學好數學分析理論知識。
除了要堅持外,還要注意不要在某些問題的解決上花費過多的時間。因為數學分析理論十分嚴謹,教科書在講解初步知識時,有時會不可避免地用到一些以后才能學到的理論思想,因而在初步學習時就對著這種問題不放是十分不劃算的。比如說,在“數學分析”一開始學習實數系的確界存在基本定理時,由于當時根本沒什么基礎,所以對于“引入這個定理的目的是什么?”這個問題怎么想也想不通,甚至覺得這個定理沒有什么實質的意義。但到后來學到了多元部分的數學分析,以及專業課“實變函數”時,才開始慢慢理解它的真正目的。這里之所以要說明是實數系有確界存在的性質,即相當于有一種連續的性質,目的就是為了后面的極限和連續做鋪墊的,因為只有在自變量能夠連續變化的時候,考慮因變量的相應變化才有意義,進而才能研究函數的性質。但是如果沒有學到后面,只了解區間而不知其它一些怪異的點集時是很難想通這個問題的。
所以,在開始學習數學分析時,可以考慮采取迂回的學習方式。先把那些一時難以想通的問題記下,轉而繼續學習后續知識,然后不時地回頭復習,在復習時由于后面知識的積累就可能會想通以前遺留的問題,進而又能促進后面知識的深刻理解。這種迂回式的學習方法,使得溫故不但能知新,而且還能更好地知故。
但是,也并不是說在初學時就不去思考任何問題。相反,勤于思考是學好數學必備的好習慣,“數學是思維的體操”,只有堅持思考才能掌握它的理論體系和邏輯關系。因此,應該在學習時掌握尺度,既要保證有充分的思考,但同時又不能過于鉆牛角尖。
3.了解背景,理論式學習
數學分析與中學數學明顯的一個差異就在于數學分析強調數學的基礎理論體系,而中學數學則是注重計算與解題。針對這個特點,學習數學分析就應該注重建立自己的數學理論知識框架。
要學習理論體系,首先就應該知道為什么要建立這種理論,它的作用是什么,這就要了解數學的歷史背景知識。比如“數學分析”在一開始就強調對-N語言的掌握,而它的產生則是由于數學史上的“第二次數學危機”引起的。眾所周知,Newton創立的微積分,雖然在其應用方面取得了巨大的成就,但微積分在那時的理論基礎是相當混亂的。Newton在求導數時先將無窮小量看成非零數作為分母,后來又將其視做零而舍去,因此這就導致了邏輯上的錯誤。為了給微積分奠定正確而堅實的基礎,大數學家威爾斯特拉森在Cauchy的基礎上提出了用-N語言的方法來推出極限和導數的概念。借助-N語言,可以十分清晰地展示出函數取極限的過程,而且在邏輯上也非常清楚嚴謹。這樣,當了解了這些歷史背景知識之后,就覺得學習-N語言是很必要的,學起來也就自然得多了。除了了解背景幫助我們學習理論知識外,還要下苦功夫去學習。在接觸了這些陌生的數學理論一段時間后,可能覺得看起來已經懂了,但其實自己不一定能真正掌握,尤其是那些證明中內含的邏輯關系最容易出錯。所以在學習時,應該適當地記憶理論知識,有時還應該默寫定理,只有通過默寫才能發現自己在理論上的漏洞,才能培養出自己嚴密的理論、邏輯能力,這對以后的學習都是很有幫助的。
4.把握三個環節,提高學習效率
(1)課前預習
適當的預習是必要的,了解老師即將講什么內容,相應地復習與之相關內容。如果時間不多,你可以瀏覽一下教師將要講的主要內容,獲得一個大概的印象,這可以在一定程度上幫助你在課堂上跟上教師的思路,如果時間比較充裕,除了瀏覽之外,還可以進一步細致地閱讀部分內容,并且準備好問題,看一下自己的理解與教師講解的有什么區別,有哪些問題需要與教師討論。如果能夠做到這些,那么你的學習就會變得比較主動、深入,會取得比較好的效果。
(2)認真上課
注意老師的講解方法和思路,其分析問題和解決問題的過程,記好課堂筆記,聽課是一個全身心投入聽、記、思相結合的過程。教師在有限的課堂教學時間中,只能講思路,講重點,講難點。不要指望教師對所有知識都講透,要學會自學,在自學中培養學習能力和創造能力。所以要努力擺脫對于教師和對于課堂的完全依賴心理。當然也不是完全不要老師,不上課。老師能在課堂教學把主要思路,重點與難點交代清楚,從而使你自學起來條理清楚,有的放矢。對于教師在課堂上講的知識,最重要的是獲得整體的認識,而不拘泥于每個細節是否清楚。學生在課堂上聽課時,也應當把主要精力集中在教師的證明思路和對于難點的分析上。如果有某些細節沒有聽明白,不要影響你繼續聽其它內容。只要掌握了主要思路,即使某些細節沒有聽清楚,也沒有關系。你自己完全能夠在這個思路的引導下將全部細節補足,最后推出結論。應當在學習的各個環節培養自己的主動精神和自學能力,擺脫對教師與課堂的過分依賴。這不僅是今天學習的需要,而且是培養創造能力的需要。
(3)課后復習
復習不是簡單的重復,應當用自己的表達方式再現所學的知識,例如對某個定理的復習,不是再讀一遍書或課堂筆記,而是離開書本和筆記,回憶有關內容,不清楚之處再對照教材或筆記。另外,復習時的思路不應當教師講課或者教科書的翻版,一個可供參考的方法是采用倒敘式。從定理的結論倒推,為了得到定理的結論,是怎樣進行推理的,定理的條件用在何處。這樣倒置思維方式,更加接近這個定理的發現的思路,是一種創造性的思維活動。
5.掌握方法,全面式學習
(1)概念的學習方法是:①閱讀概念,記住名稱或符號;②背誦定義,掌握特性;③舉出正反實例,體會概念反映的范圍;④進行練習,準確地判斷;⑤與其它概念進行比較,弄清概念間的關系。
(2)公式的學習方法是:①書寫公式,記住公式中字母問的關系;②懂得公式的來龍去脈,了解推導過程;③驗算公式,在公式具體化過程中體會公式中反映的規律;④將公式進行各種變換,了解其不同的變化形式。
(3)定理的學習方法是:①背誦定理;②分清定理的條件和結論;③了解定理的證明過程;④應用定理證明有關問題;⑤體會定理與逆否定理、逆命題的聯系。有的定理包含公式,如中值定理、定理,它們的學習還應該同公式的學習方法結合起來進行。
6.數學分析解題方法
在學習數學分析過程中,更多的困難來自于習題。
首先,大家要重視基本概念和基本原理的理解和掌握,不要一頭扎進題海中去。上面已經提及,提高解題能力重要途徑之一是掌握好基本概念和基本方法。另一方面,因為數學分析題型變化多樣,解題技巧豐富多彩,許多類型的題目并不是只要掌握好基本概念和基本方法就會作的。需要看一些例題,或者需要教師的指點。不要因為某些題目一時找不到思路而失去信心。
至于如何解題,很難總結出幾個適用于所有題目的通用的方法。怎樣提高自己的解題能力?除了天生的智力因素之外,解題能力首先取決于基本概念和基本原理的理解與掌握程度。所以,多下功夫掌握基本概念和基本原理,盡可能地多做題目,在記憶的基礎上理解,在完成作業中深化,在比較中構筑知識結構的框架,是提高解題能力的重要途徑。另外,做題要善于總結,特別是從不同的題目中提煉出一些有代表性的思想方法。
下面是數學分析課程中部分內容的一些解題方法。
(1)數列的極限
重點:了解定義,即證明方法。特別是Cauchy收斂準則。學會反證法的表述法。
解法:
a.利用壓縮映像或者數學歸納法及放縮法的到極限存在。然后,假設極限等于c,解出c的具體的值。
b.有時可以直接解出數列的通項公式,然后帶入求得極限。c.Stolz公式。
(2)求函數的極限重點:同1)的重點解法:
a.對于一元的情況比較簡單,注意應用極限性質時的條件要求。
b.對于多元的時候,先處理一個未知數,再處理第二個。不斷利用放縮法;蛘邠Q元。
c.具體要了解上下極限、上下確界的含義。注意,極限存在也是一個條件,且這個條件是很強的。
(3)函數的連續性
重點:了解定義,和基本證明的方法。了解什么是一致連續性.解法:
a.證明f(x)和g(x)有交點的題目,如果是連續的,可以用介值定理,否則可以用實數系的定理來證明。
b.有些題目證明f(x)符合某些性質,可以先證明整數、再證明有理數。最后利用連續性來證明所有的實數滿足條件.
c.了解什么是一致連續,能舉得出連續但不是一致連續的各種函數圖像的例子,對于解題時很有幫助的
(4)導數和微分
重點:會求導的各種技巧,并了解定義求導數的方法。了解可導和連續的關系。
解法:
a.一元微分是十分簡單的。二元以上的微分,要用鏈式求導,可能會很繁瑣,但要做到滴水不漏。另外,學會換元的方法。
b.對于求最值的題目,首先試試初等方法,不行就用Lagrange乘子法。c.熟練掌握三種中值定理。遇到證明不等式,就想辦法往這三個中值定理靠,構造輔助函數。實在不行,就構造f(x)=左邊,g(x)=右邊。證明f(x)-g(x)遞增或者遞減,然后再取邊界的情況討論一下。
d.熟練掌握L’Hospital法則,注意它和Cauchy中值定理的聯系。注意它的條件必須要導函數連續。c.有些題目可以不用L’Hospital,直接用Taylor級數代余項的展開?赡芨鼮楹啙崱
(5)積分
重點:熟練不定積分。和多元微積分的各種方法。了解積分中值定理.解法:
a.一元微積分比較簡單。多元微積分,強調技巧。熟練掌握包括換元、Green(Stokes)定理、Gauss公式。并且注意,使用他們要求有閉曲線,或者封閉曲面。如果沒有封閉的面記得要補上那部分.b.含參變量的積分,掌握萊布尼茲求導公式,剩下的就是求導的各種技巧了。I(a)=f(a);I’(a)=f(a)I(a)題目里面沒有要求求出函數解析式,只要求一些特殊的值。找到I(x0),I’(x0)的關系,同具體參見試題。
c.積分不等式:積分中值定理或者利用求導的方法證明,基本同前面的導數的情況。
d.學會利用級數展開的方法求積分,并了解一些特殊的定積分的值。
e.了解絕對收斂和相對收斂的區別。
(6)一致連續和一致收斂
重點:充分了解一致收斂的含義。解法:
a.大部分題目會和積分或者求和聯系起來,首先證明(內閉)一致收斂,然后用定義證明,將積分區間分成兩部分,分別趨近于不同的極限.
b.證明函數組一致收斂:AD判別法(注意還有關于積分的AD判別法,參見陳傳璋的版本,歸根到底就是Abel求和公式和分部積分法),或者按照定義作?赡芤殖蓭讉區間,注意這一點,此時是證明對于任意的e,在這幾個區間中尋找最小的d,使得差小于e。而不是證明分別在這幾個區間中,一致收斂。
c.證明函數組不是一致收斂的。得到一個數列{xn},如果fn(xn)不趨近于f(x)的話就不是一致收斂的。
d.逐項求導和逐項積分要求一致收斂(內閉一致收斂也可以)。由于積分和求導都是極限的運算,這就是所謂的極限互相穿越的意思。
掌握一定量的題型,對于一些題目,直接知道用什么方法做。有些題目沒有頭緒的時候,可先嘗試找反例,然后想想為什么反例不成功,從中可以的得到不少的啟發。還有要充分了解函數的各種性質。做題的時候腦子里要有函數圖像。另外,充分了解定義,特別是一致收斂。了解為什么有時候一致收斂才有題目的結論,如果條件收斂,是不是也有這樣的條件。多想幾次就有了深刻的了解。遇到不清楚的地方趕快看書,多看幾遍書對于理解題目是非常有用的。再有,盡可能多地參考一些書籍會使你開闊眼界,增長知識,加深理解。每個人有不同的風格。不同的切入角度,會使你有時候讀一些問題豁然開朗。
7.學會利用參考書
盡可能多地參考一些書籍會使你開闊眼界,增長知識,加深理解。每個作者有不同的風格,不同的切入角度,學會利用參考書會使你對一些問題豁然開朗。
看參考書有兩種方式,其一是通讀某一本書,不過大家往往沒有太多的時間去通讀教材之外的書。所以我建議大家采用第二種方法:以問題為中心,有選擇地讀參考書,具體地說就是:如果你對數學分析中的某一部分,或者某個問題有興趣,希望多了解一些,作比較深入的研究,那么可以查閱幾本書,看一看其他書上對這個問題是怎樣論述的,在學習的基礎上,自己可以做一個小結,在是自學的重要方式。好的輔導書對于幫助自己學習數學分析也是有用的,但是使用輔導書要注意方法,不要僅僅停留于逐個地看例題,看得懂不等于會做,想到思路不等于做得完全正確。如果你想扎扎實實地提高解題能力,就要認真地、獨立地解題,通過自己動腦動手體會解題的思路、方法和技巧。
最后,就是平時沒有事的時候多想想,想想一些定理,自己想不同的方法證明。想想如果沒有其中的某些條件,定理是否仍然成立。
總之,掌握了一定方法,再加上自己的努力,必能學好數學分析這門課,為后繼課程的學習打下扎實的基礎。
【數學學習方法總結】相關文章:
數學的學習方法總結10-11
數學學習方法總結10-30
小學數學的學習方法總結11-30
初中數學的學習方法總結10-25
小學數學的學習方法總結09-10
數學學習方法總結09-05
初中數學的學習方法總結09-07
數學學習方法的總結11-14
關于數學的學習方法總結04-17
數學學習方法總結11-22