高中數學集合知識點總結
數學集合是一個簡單但必考的考點,那么相關的知識點又有什么呢?下面高中數學集合知識點總結是小編為大家帶來的,希望對大家有所幫助。
高中數學集合知識點總結
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
、.元素的確定性;②.元素的互異性;③.元素的無序性
說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的分類:
1.有限集含有有限個元素的集合
2.無限集含有無限個元素的集合
3.空集不含任何元素的集合例:{x|x2=-5}
4、集合的表示:{…}如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}
1.用拉丁字母表示集合:A={我校的籃球隊員}B={12345}
2.集合的表示方法:列舉法與描述法。
注意。撼S脭导捌溆浄ǎ
非負整數集(即自然數集)記作:N
正整數集N*或N+整數集Z有理數集Q實數集R
關于“屬于”的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A
列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。
、僬Z言描述法:例:{不是直角三角形的三角形}
②數學式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
二、集合間的基本關系
1.“包含”關系子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA
2.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
3.“相等”關系(5≥5,且5≤5,則5=5)
實例:設A={x|x2-1=0}B={-11}“元素相同”
結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
、偃魏我粋集合是它本身的子集。A?A
、谡孀蛹:如果A?B且A?B那就說集合A是集合B的真子集,記作AB(或BA)
③如果A?BB?C那么A?C
、苋绻鸄?B同時B?A那么A=B
三、集合的.運算
1、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.
2.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集.
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.
3、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
記作:CSA即CSA={x?x?S且x?A}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U
4、交集與并集的性質:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A
A∪φ=AA∪B=B∪A.
【高中數學知識點總結】相關文章:
人教版高中數學知識點總結07-20
高中數學知識點體積公式大全12-21
高中數學知識點二項式定理12-31
高中數學重要知識點排列組合公式解析09-06
高中數學月考總結10-29
高中數學月考總結07-16
高中數學月考總結10-12
電路知識點總結11-28
政治知識點總結01-11
整式知識點總結10-24