- 相關推薦
探索影響工業GDP增長的因素
探索影響工業GDP增長的因素
目前,我國經濟正處在高速穩定增長的階段。而根據以前學過的知識,我們知道GDP主要是靠工業拉動的,因此,我們想探索一下哪些因素是影響工業GDP的主要因素?紤]到目前工業的生產特點:固定資產投資較大,需要能源的推動,我們猜想這是影響工業GDP的主要因素。于是,我們嘗試用計量經濟學的知識驗證我們的猜想,并力圖建立一個簡單的數量模型來解釋它們之間的關系。以下是數據分析:
1.分別探索固定資產投資和能源消費量對工業GDP的影響
首先,我們討論單因素的模型,第一個是固定資產投資與工業GDP。
模型1:INDUSG = C + β*FXA+u
Dependent Variable: INDUSG
Method: Least Squares
Date: 12/15/03 Time: 17:15
Sample: 1985 2002
Included observations: 18
Variable Coefficient Std. Error t-Statistic Prob.
C 1258.981 588.7161 2.138520 0.0482
FXA 1.118321 0.027486 40.68678 0.0000
R-squared 0.990427 Mean dependent var 20313.41
Adjusted R-squared 0.989829 S.D. dependent var 15007.39
S.E. of regression 1513.518 Akaike info criterion 17.58670
Sum squared resid 36651784 Schwarz criterion 17.68563
Log likelihood -156.2803 F-statistic 1655.414
Durbin-Watson stat 0.841509 Prob(F-statistic) 0.000000
注釋:FXA――固定資產投資額(單位:元)
INDUSG――工業GDP
t= 2.138 40.69
(R2=0.9904,F=1655.4 DW=0.8415)
由t統計量可以看出,固定資產投資(FXA)對工業GDP的影響十分顯著。
從R2和F統計量可以看出模型擬合得非常好。
但是D-W<dL=1.046表明殘差存在相當強的自相關性;
下面我們接著做了能源消費量與工業GDP的模型
模型2:INDUSG = C + β*POW_US+u
Dependent Variable: INDUSG
Method: Least Squares
Date: 12/15/03 Time: 17:14
Sample: 1985 2002
Included observations: 18
Variable Coefficient Std. Error t-Statistic Prob.
C -51613.80 7585.126 -6.804607 0.0000
POW_US 0.626075 0.064895 9.647576 0.0000
R-squared 0.853313 Mean dependent var 20313.41
Adjusted R-squared 0.844145 S.D. dependent var 15007.39
S.E. of regression 5924.689 Akaike info criterion 20.31608
Sum squared resid 5.62E+08 Schwarz criterion 20.41501
Log likelihood -180.8447 F-statistic 93.07572
Durbin-Watson stat 0.192529 Prob(F-statistic) 0.000000
注釋:POW_US――能源消費量(單位:萬噸標準煤)
INDUSG = -51613.79789 + 0.6260746823*POW_US
t= -6.804 9.647
(R2=0.853,F=93.07 DW=0.1925)
由t統計量可以看出,能源消費量(POW_US)對工業GDP的影響十分顯著;
但從R2和F統計量可以看出模型整體擬合得不是很好;
同時D-W≈0表明殘差存在嚴重的自相關性。
這樣的結果說明在本模型中并沒有包含影響工業GDP的關鍵因素。
由以上兩個表可以看出,這兩個因素對工業GDP的影響是比較顯著的,證明我們的猜想是符合現實情況的。但是這兩個模型的D-W檢驗結果都相當差,說明了兩個模型都漏掉了影響模型的重要因素。于是我們考慮做二元模型。
2.建立二元模型,
探索固定資產投資和能源消費量對工業GDP的相對影響強弱
由以上一元模型的結果可知:固定資產投資(FXA)和能源消費量(POW_US)對工業GDP的影響都很顯著,所以嘗試用這兩個解釋變量作二元模型,得到模型3。
模型3:INDUSG = C + β1*FXA + β2*POW_US+u
Dependent Variable: INDUSG
Method: Least Squares
Date: 12/15/03 Time: 17:46
Sample: 1985 2002
Included observations: 18
Variable Coefficient Std. Error t-Statistic Prob.
C -5810.148 3190.055 -1.821332 0.0886
FXA 0.999148 0.058451 17.09390 0.0000
POW_US 0.079206 0.035254 2.246735 0.0401
R-squared 0.992838 Mean dependent var 20313.41
Adjusted R-squared 0.991883 S.D. dependent var 15007.39
S.E. of regression 1352.116 Akaike info criterion 17.40774
Sum squared resid 27423273 Schwarz criterion 17.55614
Log likelihood -153.6697 F-statistic 1039.631
Durbin-Watson stat 0.999447 Prob(F-statistic) 0.000000
解釋變量相關系數矩陣:
FXA POW_US
FXA 1.000000 0.907479
POW_US 0.907479 1.000000
INDUSG = -5810.148217 + 0.9991484399*FXA + 0.07920588433*POW_US
t= 1.8213 17.09 2.24
(R2=0.9928,F=1039 DW=0.999)Cov(FXA,POW_US)=0.9075
從以上數據可以看出:模型總體擬合的很好(R2=0.9928),也比較可以。但如果考慮二者的相關系數很大,模型具有多重共線性。
同時,dL=0.933<D-W< du=1.696落在了不可判斷區域,D-W比較接近dL,保守起見還是認為模型具有自相關性。
因此這個模型不是很理想。
由于沒辦法擴大樣本容量,我們只有變換模型形式,用取對數的方式來減弱多重共線性。于是有模型4:
模型4:Ln(INDUSG) = C +β1*Ln(FXA) +β2*Ln(POW_US)+u
Dependent Variable: LIN
Method: Least Squares
Date: 12/15/03 Time: 19:26
Sample: 1985 2002
Included observations: 18
Variable Coefficient Std. Error t-Statistic Prob.
C -7.621748 3.210235 -2.374202 0.0314
LFX 0.758318 0.069112 10.97233 0.0000
LPOW 0.868523 0.329513 2.635778 0.0187
R-squared 0.995059 Mean dependent var 9.579689
Adjusted R-squared 0.994400 S.D. dependent var 0.909086
S.E. of regression 0.068030 Akaike info criterion -2.386719
Sum squared resid 0.069422 Schwarz criterion -2.238323
Log likelihood 24.48047 F-statistic 1510.340
Durbin-Watson stat 1.029314 Prob(F-statistic) 0.000000
解釋變量相關系數矩陣:
LFX LPOW
LFX 1.000000 0.969168
LPOW 0.969168 1.000000
做出來的效果和“模型3”從數值上看并沒有明顯的改善:多重共線性依然十分嚴重;dL=0.933<D-W< du=1.696還是落在了不可判斷區域。
由模型3和模型4,我們看到,兩個解釋變量之間的相關性很強且不可通過數學上的變換減弱這種相關性,我們考慮將其中的一個因素替換掉。從以上四個模型的t統計量來說,固定資產投資(FXA)對工業GDP的影響比能源消費量(POW_US)對工業GDP的影響要顯著,而且從“能源消費量”本身的數據來說,也存在著異常波動,將能源消耗總量數據作圖:
如圖:
可以看到,從97年后,能源消費量都比較異常:經濟在增長,但能源消耗量卻在下降。因此,從這個意義上講,能源消費量(POW_US)這個變量也不宜采納到模型中。
3.更換模型的變量,再作探索
根據柯布——道格拉斯函數給我們的啟示,我們推測工業企業效益不僅與固定資產投資額(資本)有關,還與勞動人數(勞動力)有一定的關系,于是做出了下面的模型:
模型5:INDUSG = C +β1*FXA +β2*LAB+u
Dependent Variable: INDUSG
Method: Least Squares
Date: 12/15/03 Time: 20:03
Sample: 1985 2002
Included observations: 18
Variable Coefficient Std. Error t-Statistic Prob.
C -7647.342 3337.044 -2.291652 0.0368
FXA 1.024353 0.041885 24.45656 0.0000
LAB 0.728371 0.269842 2.699254 0.0165
R-squared 0.993557 Mean dependent var 20313.41
Adjusted R-squared 0.992698 S.D. dependent var 15007.39
S.E. of regression 1282.424 Akaike info criterion 17.30190
Sum squared resid 24669187 Schwarz criterion 17.45030
Log likelihood -152.7171 F-statistic 1156.534
Durbin-Watson stat 1.069234 Prob(F-statistic) 0.000000
解釋變量相關系數矩陣:
FXA LAB
FXA 1.000000 0.831158
LAB 0.831158 1.000000
注釋:LAB――第二產業勞動人數(單位:萬人)
FXA——固定資產投資額(單位:元)
INDUSG = -7647.342 + 1.024353*FXA + 0.728371*LAB
t= -2.291652 24.45656 2.699254
(R2=0.993557,F=1156 DW=1.069)
該模型與模型3和模型4相比,多重共線性有所減弱,但是殘差自相關性依然存在:dL=0.933<D-W< du=1.696仍然落在了不可判斷區域,說明還是有因素被排除在模型外面了。
再考慮到以上模型只在生產方面考慮對工業GDP的影響,沒考慮消費對工業的影響,因為消費的增加會引起社會對工業產品的需求,進而促進廠家的生產積極性。于是,我們將消費因素考慮進去,作出模型6。
模型6:INDUSG = C +β1*FXA +β2*CMS+u
Dependent Variable: INDUSG
Method: Least Squares
Date: 12/15/03 Time: 20:23
Sample: 1985 2002
Included observations: 18
Variable Coefficient Std. Error t-Statistic Prob.
C -1268.643 716.4589 -1.770713 0.0969
FXA 0.332958 0.184087 1.808693 0.0906
CMS 0.858164 0.200075 4.289220 0.0006
R-squared 0.995701 Mean dependent var 20313.41
Adjusted R-squared 0.995127 S.D. dependent var 15007.39
S.E. of regression 1047.590 Akaike info criterion 16.89738
Sum squared resid 16461659 Schwarz criterion 17.04578
Log likelihood -149.0764 F-statistic 1736.903
Durbin-Watson stat 0.467099 Prob(F-statistic) 0.000000
解釋變量相關系數矩陣:
FXA CMS
FXA 1.000000 0.994645
CMS 0.994645 1.000000
注釋:CMS――社會消費品零售總額(單位:億元)
FXA——固定資產投資額(單位:元)
固定資產投資與社會消費品零售總額居然存在著如此高度的相關性,這種情況我們完全沒有想到。出現這種現象的原因可能是消費品需求的增大會使得企業擴大規模,增加固定資產投資;而且由于中國正處在高速發展階段,各種指標都在增長,在一定程度上也加重了模型的多重共線性。自然,這個模型也是不合格的。D-W<dL=0.933說明了消費并不是我們所探求的影響工業GDP的重要因素。
4.較優模型的得出
經過仔細的思考,我們覺得工業產品主要是用于國民生產的中間投入,所以本期的工業產出可能會影響今后若干期的工業GDP,因此,我們考慮采用滯后模型,同時考慮本期固定資產增加也會對工業GDP產生重要影響,所以我們得到模型7。
模型7:INDUSG = C +β1*FXA +β2*INDUSG(-1)+u
Dependent Variable: INDUSG
Method: Least Squares
Date: 12/15/03 Time: 20:47
Sample(adjusted): 1986 2002
Included observations: 17 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
C 1270.111 474.7386 2.675391 0.0181
FXA 0.567903 0.148809 3.816317 0.0019
INDUSG(-1) 0.526077 0.141653 3.713843 0.0023
R-squared 0.994836 Mean dependent var 21305.45
Adjusted R-squared 0.994098 S.D. dependent var 14848.44
S.E. of regression 1140.681 Akaike info criterion 17.07542
Sum squared resid 18216141 Schwarz criterion 17.22246
Log likelihood -142.1411 F-statistic 1348.575
Durbin-Watson stat 0.786842 Prob(F-statistic) 0.000000
INDUSG = 1270.111499 + 0.5679025377*FXA + 0.5260769592*INDUSG(-1)
t= 2.675 3.816 3.714
(R2=0.9948,F=1348.57 DW=0.7868)
用德賓h-檢驗法檢驗模型是否存在一階自相關性:
顯著性水平,查標準正態分布表得臨界值=1.96,
=3.0805>=1.96,拒絕原假設,模型存在一階自相關。
可以看出,模型7的參數除了h外,都是很好的,我們繼續做滯后兩期的模型。
模型8:INDUSG = C +β1*FXA +β2*INDUSG(-1) +β3*INDUSG(-2)+u
Dependent Variable: INDUSG
Method: Least Squares
Date: 12/15/03 Time: 19:15
Sample(adjusted): 1987 2002
Included observations: 16 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
C 838.7794 385.0226 2.178520 0.0500
FXA 0.437429 0.108278 4.039881 0.0016
INDUSG(-1) 1.176130 0.192067 6.123527 0.0001
INDUSG(-2) -0.571410 0.145066 -3.938953 0.0020
R-squared 0.997648 Mean dependent var 22389.11
Adjusted R-squared 0.997060 S.D. dependent var 14624.66
S.E. of regression 792.9241 Akaike info criterion 16.40165
Sum squared resid 7544743. Schwarz criterion 16.59480
Log likelihood -127.2132 F-statistic 1696.898
Durbin-Watson stat 1.938562 Prob(F-statistic) 0.000000
INDUSG=838.77 + 0.4374*FXA + 1.176*INDUSG(-1) - 0.5714*INDUSG(-2)
t= 2.178 4.039 6.124 -3.938
( R2=0.9976,F=1696.8 DW=1.938 h=0.1920 )
模型7: ( R2=0.9948,F=1348.5 DW=0.7868 h=3.0805)
用德賓h-檢驗法檢驗模型是否存在一階自相關性:
顯著性水平,查標準正態分布表得臨界值=1.96,
=0.1920<=1.96,接受原假設,模型不存在一階自相關。
從任何一個參數上看,模型8都比模型7好,因此模型8應該比模型7好,不過INDUSG(-2)的系數為負數很難解釋。但是我們真的找不到更好的模型。兩期前的工業GDP會使得本期的工業GDP減少,這種情況幾乎不可思議。
考慮其殘差的異方差性,在Eviews里,將樣本時間定義為1987――1992,然后用OLS方法求得下列結果:
INDUSG = -581.95 + 0.6083*FXA + 0.6768*INDUSG(-1) + 0.07769*INDUSG(-2)
t= -1.796 6.30 2.57 0.303
=0.9967
將樣本時間定義為1997――2002,然后用OLS方法求得下列結果:
INDUSG = 15364.27 + 1.0895*FXA - 0.247*INDUSG(-1) - 0.132*INDUSG(-2)
t= 1.101 1.3365 -0.1963 -0.3138
=0.9801
求F統計量:
給定顯著性水平,得臨界值,,拒絕原假設,存在異方差。
用加權最小二乘法修正模型的異方差:設權數,回歸模型9:
模型9:INDUSG = C +β1*FXA +β2*INDUSG(-1) +β3*INDUSG(-2)+u
Dependent Variable: INDUSG
Method: Least Squares
Date: 12/24/03 Time: 18:29
Sample(adjusted): 1987 2002
Included observations: 16 after adjusting endpoints
Weighting series: W
Variable Coefficient Std. Error t-Statistic Prob.
C 604.5134 113.7287 5.315400 0.0002
FXA 0.481847 0.021106 22.83002 0.0000
INDUSG(-1) 1.170427 0.054186 21.60004 0.0000
INDUSG(-2) -0.592923 0.057094 -10.38498 0.0000
Weighted Statistics
R-squared 0.999962 Mean dependent var 16391.35
Adjusted R-squared 0.999952 S.D. dependent var 26145.37
S.E. of regression 181.2190 Akaike info criterion 13.44961
Sum squared resid 394083.9 Schwarz criterion 13.64275
Log likelihood -103.5969 F-statistic 104072.4
Durbin-Watson stat 1.206289 Prob(F-statistic) 0.000000
Unweighted Statistics
R-squared 0.997304 Mean dependent var 22389.11
Adjusted R-squared 0.996630 S.D. dependent var 14624.66
S.E. of regression 848.9344 Sum squared resid 8648276.
Durbin-Watson stat 1.780125
INDUSG = 604.513 + 0.4818*FXA + 1.170*INDUSG(-1) - 0.5929*INDUSG(-2)
t = 5.315 22.83 21.60 10.38
(R2=0.99996,F=104072)
用德賓h-檢驗法檢驗模型是否存在一階自相關性:
顯著性水平,查標準正態分布表得臨界值=1.96,
=1.6263<=1.96,接受原假設,模型不存在一階自相關。
至此,我們得到了一個比較好的模型來影響解釋工業GDP的因素,這就是:
INDUSG = 604.513 + 0.4818*FXA + 1.170*INDUSG(-1) - 0.5929*INDUSG(-2)
它的經濟意義是:在其他因素不變的條件下,固定資產投資(FXA)每增加一個單位,工業GDP增長0.4818個單位;前一期工業GDP每增加一個單位,當期工業GDP增長0.4818個單位;前兩期工業GDP每增加一個單位,當期工業GDP減少0.5929個單位,這種經濟解釋讓人很難相信,但這就是用科學的方法做出來的模型。也許,這還是一個不為人所知的規律吧。一個經濟迅速發展的東方大國,許多西方經濟學的觀點都已經證明失效,這也正是她吸引世界眼球的地方。: )
【探索影響工業GDP增長的因素】相關文章:
探析音樂表現的影響因素03-19
是什么因素創造了長期經濟增長的根本動力03-19
影響小兒腹瀉療效的常見因素02-26
業務外包及其影響因素分析03-22
知識共享方式及影響因素分析03-25
服裝版型的影響因素之分析11-30
審計判斷績效及其影響因素03-18
淺析連鎖藥店選址影響因素03-19