1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 基于FPGA的快速傅立葉變換

        時間:2024-05-12 05:15:13 理工畢業論文 我要投稿
        • 相關推薦

        基于FPGA的快速傅立葉變換

        摘要:在對FFT(快速傅立葉變換)算法進行研究的基礎上,描述了用FPGA實現FFT的方法,并對其中的整體結構、蝶形單元及性能等進行了分析。

        傅立葉變換是數字信號處理中的基本操作,廣泛應用于表述及分析離散時域信號領域。但由于其運算量與變換點數N的平方成正比關系,因此,在N較大時,直接應用DFT算法進行譜變換是不切合實際的。然而,快速傅立葉變換技術的出現使情況發生了根本性的變化。本文主要描述了采用FPGA來實現2k/4k/8k點FFT的設計方法。

        1 整體結構

        一般情況下,N點的傅立葉變換對為:

        其中,WN=exp(-2 pi/N)。X(k)和x(n)都為復數。與之相對的快速傅立葉變換有很多種,如DIT(時域抽取法)、DIF(頻域抽取法)、Cooley-Tukey和Winograd等。對于2n傅立葉變換,Cooley-Tukey算法可導出DIT和DIF算法。本文運用的基本思想是Cooley-Tukey算法,即將高點數的傅立葉變換通過多重低點數傅立葉變換來實現。雖然DIT與DIF有差別,但由于它們在本質上都是一種基于標號分解的算法,故在運算量和算法復雜性等方面完全一樣,而沒有性能上的優劣之分,所以可以根據需要任取其中一種,本文主要以DIT方法為對象來討論。

        N=8192點DFT的運算表達式為:

        式中,m=(4n1+n2)(2048k1+k2)(n=4n1+n2,k=2048k1+k2)其中n1和k2可。,1,...,2047,k1和n2可取0,1,2,3。

        由式(3)可知,8k傅立葉變換可由4×2k的傅立葉變換構成。同理,4k傅立葉變換可由2×2k的傅立葉變換構成。而2k傅立葉變換可由128×16的傅立葉變換構成。128的傅立葉變換可進一步由16×8的傅立葉變換構成,歸根結底,整個傅立葉變換可由基2、基4的傅立葉變換構成。2k的FFT可以通過5個基4和1個基2變換來實現;4k的FFT變換可通過6個基4變換來實現;8k的FFT可以通過6個基4和1個基2變換來實現。也就是說:FFT的基本結構可由基2/4模塊、復數乘法器、存儲單元和存儲器控制模塊構成,其整體結構如圖1所示。

        圖1中,RAM用來存儲輸入數據、運算過程中的中間結果以及運算完成后的數據,ROM用來存儲旋轉因子表。蝶形運算單元即為基2/4模塊,控制模塊可用于產生控制時序及地址信號,以控制中間運算過程及最后輸出結果。

        2 蝶形運算器的實現

        基4和基2的信號流如圖2所示。圖中,若A=r0+j*i0,B=r1+j*i1,C=r2+j*i2,D=r3+j*i3是要進行變換的信號,Wk0=c0+j*s0=1,Wk1=c1+j*s1,Wk2=c2+j*s2,Wk3=c3+j*s3為旋轉因子,將其分別代入圖2中的基4蝶形運算單元,則有:

        A′=[r0+(r1×c1-i1×s1)+(r2×c2-i2×s2)+(r3×c3-i3×s3)]+j[i0+(i1×c1+r1×s1)+(i2×c2+r2×s2)+(i3×c3+r3×s3)]? 。ǎ矗

        B′=[r0+(i1×c1+r1×s1)-(r2×c2-i2×s2)-(i3×c3+r3×s3)]+j[i0-(r1×c1-i1×s1)-(i2×c2+r2×s2)+(r3×c3-i3×s3)]  (5)

        C′=[r0-(r1×c1-i1×s1)+(r2×c2-i2×s2)-(r3×c3-i3×s3)]+j[i0-(i1×c1+r1×s1)+(i2×c2+r2×s2)-(i3×c3+r3×s3)] (6)

        D′=[r0-(i1×c1+r1×s1)-(r2×c2-i2×s2)+(i3×c3+r3×s3)]+j[i0+(r1×c1-i1×s1)-(i2×c2+r2×s2)-(r3×c3-i3×s3)]? (7)

        而在基2蝶形中,Wk0和Wk2的值均為1,這樣,將A,B,C和D的表達式代入圖2中的基2運算的四個等式中,則有:

        A′=r0+(r1×c1-i1×s1)+j[i0+(i1×c1+r1×s1)]? (8)

        B′=r0- (r1×c1-i1×s1)+j[i0-(i1×c1+r1×s1)] 。ǎ梗

        C′=r2+(r3×c3-i3×s3)+j[i0+(i3×c3+r3×s3)]? (10)

        D′=r2-(r3×c3-i3×s3)+j[i0-(i3×c3+r3×s3)]? (11)

        在上述式(4)~(11)中有很多類同項,如i1×c1+r1×s1和r1×c1-i1×s1等,它們僅僅是加減號的不同,其結構和運算均類似,這就為簡化電路提供了可能。同時,在蝶形運算中,復數乘法可以由實數乘法以一定的格式來表示,這也為設計復數乘法器提供了一種實現的途徑。

        以基4為例,在其運算單元中,實際上只需做三個復數乘法運算,即只須計算BWk1、CWk2和DWk3的值即可,這樣在一個基4蝶形單元里面,最多只需要3個復數乘法器就可以了。在實際過程中,在不提高時鐘頻率下,只要將時序控制好?便可利用流水線(Pipeline)技術并只用一個復數乘法器就可完成這三個復數乘法,大大節省了硬件資源。

        圖2 基2和基4蝶形算法的信號流圖

        3 FFT的地址

        FF

        【基于FPGA的快速傅立葉變換】相關文章:

        一種基于分數階傅立葉變換的LFM信號檢測簡化方法11-22

        基于空間傅立葉變換的智能天線下行波束賦形技術研究03-07

        基于EDA技術的FPGA設計03-18

        基于FPGA的HDLC通信模塊的實現05-14

        基于FPGA的TS over lP的設計與實現03-21

        基于FPGA的智能誤碼測試儀03-21

        基于FPGA的快速并行FFT及其在空間太陽望遠鏡圖像鎖定系統中的應03-18

        基于小波變換的諧波檢測法03-28

        基于HOUGH變換的雷達圖像圓檢測03-07

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>