- 相關推薦
復合函數的孤立奇點與留數計算
復合函數的孤立奇點與留數計算
摘要
復合函數的孤立奇點與留數計算是留數理論應用中的重要內容,對于1些復雜的復合函數,如果直接討論其孤立奇點的類型與留數計算往往極為困難,為了解決這1問題,本文將復合函數分解為兩個簡單函數來研究,首先建立了復合函數的孤立奇點類型與其內外函數的孤立奇點類型的關系,在1定意義下,所得結果具有普遍性。然后,根據某些孤立奇點的特性,并利用留數的定義,建立了若干個用內外函數的留數或某些Laurent系數來表示復合函數的留數的公式,并舉例介紹了其應用,從列舉的例子中可以看到所得公式在簡化復合函數留數計算中的作用。
關鍵詞:復合函數,孤立奇點,可去奇點,極點,本性奇點,留數。
Abstract
Compound functions isolated singularity and residue computation is the substantial content of residue theorys application, to several complicated compound function, if we discuss it directly, it is difficulty. To solve this problem, this passage will put compound function into two parts. Firstly, constitute compound functions isolated singularity and relation of interior function and external function. In a degree, the result is ripeness. Where after. We can use certain isolated singularitys property and define of fluxion, constitute several interior function and external functions fluxion or several Laurent quotient to show compound functions flexion’s expressions. Take some example to solve compound function.
Key words: Compound function, isolated singularity, removable singularity, vertex, essential singularity, residue.
【復合函數的孤立奇點與留數計算】相關文章:
光榮孤立辯03-11
談常見效用函數下臨界保費的計算03-12
構造函數與析構函數11-22
探討農林復合模式03-18
函數的零點03-07
函數概念的“源”與“流03-29
二次函數在函數解答題中的考查的問題和策略11-16
函數概念教學的幾點思考11-22