GMAT算術知識點解答
1排列與組合
There are some useful methods for counting objects and sets of objects without actually listing the elements to be counted. The following principle of Multiplication is fundamental to these methods.
If a first object may be chosen in m ways and a second object may be chosen in n ways, then there are mn ways of choosing both objects.
As an example, suppose the objects are items on a menu. If a meal consists of one entree and one dessert and there are 5 entrees and 3 desserts on the menu, then 53 = 15 different meals can be ordered from the menu. As another example, each time a coin is flipped, there are two possible outcomes, heads and tails. If an experiment consists of 8 consecutive coin flips, the experiment has 28 possible outcomes, where each of these outcomes is a list of heads and tails in some order.
階乘:factorial notation
假如一個大于1的'整數n,計算n的階乘被表示為n!,被定義為從1至n所有整數的乘積,
例如:4! = 4321= 24
注意:0! = 1! = 1
排列:permutations
The factorial is useful for counting the number of ways that a set of objects can be ordered. If a set of n objects is to be ordered from 1st to nth, there are n choices for the 1st object, n-1 choices for the 2nd object, n-2 choices for the 3rd object, and so on, until there is only 1 choice for the nth object. Thus, by the multiplication principle, the number of ways of ordering the n objects is
【GMAT算術知識點解答】相關文章:
GMAT考試全面解答08-14
gmat數學精解之算術的總結01-25
GMAT語法解答技巧梳理11-20
GMAT邏輯題解答技巧08-21
小升初數學算術知識點歸納12-12
逆向思維解答gmat數學考題07-17
小升初數學算術定義定理公式知識點匯總07-08
GMAT數學排列類問題解答01-21
GMAT作文題目的解答技巧11-21