1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中函數的概念說課稿

        時間:2020-11-29 19:00:53 高中說課稿 我要投稿

        高中函數的概念說課稿

          涓涓不壅,終為江河,教師專業化水平的逐漸提高,需要通過教師不斷學習、鉆研理論知識并結合實際經驗,才能逐步走向成熟,下面是小編帶來的是高中函數的概念說課稿,希望對您有幫助。

        高中函數的概念說課稿

          一、說課內容:

          蘇教版九年級數學下冊第六章第一節的二次函數的概念及相關習題

          二、教材分析:

          1、教材的地位和作用

          這節課是在學生已經學習了一次函數、正比例函數、反比例函數的基礎上,來學習二次函數的概念。二次函數是初中階段研究的最后一個具體的函數,也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數和以前學過的一元二次方程、一元二次不等式有著密切的聯系。進一步學習二次函數將為它們的解法提供新的方法和途徑,并使學生更為深刻的理解“數形結合”的重要思想。而本節課的二次函數的概念是學習二次函數的基礎,是為后來學習二次函數的圖象做鋪墊。所以這節課在整個教材中具有承上啟下的重要作用。

          2、教學目標和要求:

         。1)知識與技能:使學生理解二次函數的概念,掌握根據實際問題列出二次函數關系式的方法,并了解如何根據實際問題確定自變量的'取值范圍。

         。2)過程與方法:復習舊知,通過實際問題的引入,經歷二次函數概念的探索過程,提高學生解決問題的能力.

         。3)情感、態度與價值觀:通過觀察、操作、交流歸納等數學活動加深對二次函數概念的理解,發展學生的數學思維,增強學好數學的愿望與信心.

          3、教學重點:對二次函數概念的理解。

          4、教學難點:由實際問題確定函數解析式和確定自變量的取值范圍。

          三、教法學法設計:

          1、從創設情境入手,通過知識再現,孕伏教學過程

          2、從學生活動出發,通過以舊引新,順勢教學過程

          3、利用探索、研究手段,通過思維深入,領悟教學過程

          四、教學過程:

         。ㄒ唬⿵土曁釂

          1.什么叫函數?我們之前學過了那些函數?

         。ㄒ淮魏瘮,正比例函數,反比例函數)

          2.它們的形式是怎樣的?

          (=x+b,≠0;=x ,≠0;= , ≠0)

          3.一次函數(=x+b)的自變量是什么?函數是什么?常量是什么?為什么要有≠0的條件? 值對函數性質有什么影響?

          【設計意圖】復習這些問題是為了幫助學生弄清自變量、函數、常量等概念,加深對函數定義的理解.強調≠0的條件,以備與二次函數中的a進行比較.

          (二)引入新課

          函數是研究兩個變量在某變化過程中的相互關系,我們已學過正比例函數,反比例函數和一次函數?聪旅嫒齻例子中兩個變量之間存在怎樣的關系。(電腦演示)

          例1、(1)圓的半徑是r(c)時,面積s (c)與半徑之間的關系是什么?

          解:s=πr(r>0)

          例2、用周長為20的籬笆圍成矩形場地,場地面積()與矩形一邊長x()之間的關系是什么?

          解: =x(20/2-x)=x(10-x)=-x+10x (0<x<10)

          例3、設人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉存。如果存款額是100元,那么請問兩年后的本息和(元)與x之間的關系是什么(不考慮利息稅)?

          解: =100(1+x)

          =100(x+2x+1)

          = 100x+200x+100(0<x<1)

          教師提問:以上三個例子所列出的函數與一次函數有何相同點與不同點?

          【設計意圖】通過具體事例,讓學生列出關系式,啟發學生觀察,思考,歸納出二次函數與一次函數的聯系: (1)函數解析式均為整式(這表明這種函數與一次函數有共同的特征)。(2)自變量的最高次數是2(這與一次函數不同)。

         。ㄈ┲v解新課

          以上函數不同于我們所學過的一次函數,正比例函數,反比例函數,我們就把這種函數稱為二次函數。

          二次函數的定義:形如=ax2+bx+c (a≠0,a, b, c為常數) 的函數叫做二次函數。

          鞏固對二次函數概念的理解:

          1、強調“形如”,即由形來定義函數名稱。二次函數即 是關于x的二次多項式(關于的x代數式一定要是整式)。

          2、在 =ax2+bx+c 中自變量是x ,它的取值范圍是一切實數。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r>0)

          3、為什么二次函數定義中要求a≠0 ?

          (若a=0,ax2+bx+c就不是關于x的二次多項式了)

          4、在例3中,二次函數=100x2+200x+100中, a=100, b=200, c=100.

          5、b和c是否可以為零?

          由例1可知,b和c均可為零.

          若b=0,則=ax2+c;

          若c=0,則=ax2+bx;

          若b=c=0,則=ax2.

          注明:以上三種形式都是二次函數的特殊形式,而=ax2+bx+c是二次函數的一般形式.

          【設計意圖】這里強調對二次函數概念的理解,有助于學生更好地理解,掌握其特征,為接下來的判斷二次函數做好鋪墊。

          判斷:下列函數中哪些是二次函數?哪些不是二次函數?若是二次函數,指出a、b、c.

          (1)=3(x-1)+1 (2)

          (3)s=3-2t (4)=(x+3)- x

          (5) s=10πr (6) =2+2x

          (8)=x4+2x2+1(可指出是關于x2的二次函數)

          【設計意圖】理論學習完二次函數的概念后,讓學生在實踐中感悟什么樣的函數是二次函數,將理論知識應用到實踐操作中。

         。ㄋ模╈柟叹毩

          1.已知一個直角三角形的兩條直角邊長的和是10c。

         。1)當它的一條直角邊的長為4.5c時,求這個直角三角形的面積;

         。2)設這個直角三角形的面積為Sc2,其中一條直角邊為xc,求S關

          于x的函數關系式。

          【設計意圖】此題由具體數據逐步過渡到用字母表示關系式,讓學生經歷由具體到抽象的過程,從而降低學生學習的難度。

          2.已知正方體的棱長為xc,它的表面積為Sc2,體積為Vc3。

         。1)分別寫出S與x,V與x之間的函數關系式子;

         。2)這兩個函數中,那個是x的二次函數?

          【設計意圖】簡單的實際問題,學生會很容易列出函數關系式,也很容易分辨出哪個是二次函數。通過簡單題目的練習,讓學生體驗到成功的歡愉,激發他們學習數學的興趣,建立學好數學的信心。

          3.設圓柱的高為h(c)是常量,底面半徑為rc,底面周長為Cc,圓柱的體積為Vc3

         。1)分別寫出C關于r;V關于r的函數關系式;

         。2)兩個函數中,都是二次函數嗎?

          【設計意圖】此題要求學生熟記圓柱體積和底面周長公式,在這兒相當于做了一次復習,并與今天所學知識聯系起來。

          4. 籬笆墻長30,靠墻圍成一個矩形花壇,寫出花壇面積(2)與長x之間的函數關系式,并指出自變量的取值范圍.

          【設計意圖】此題較前面幾題稍微復雜些,旨在讓學生能夠開動腦筋,積極思考,讓學生能夠“跳一跳,夠得到”。

         。ㄎ澹┩卣寡由

          1. 已知二次函數=ax2+bx+c,當 x=0時,=0;x=1時,=2;x= -1時,=1.求a、b、c,并寫出函數解析式.

          【設計意圖】在此稍微滲透簡單的用待定系數法求二次函數解析式的問題,為下節課的教學做個鋪墊。

          2.確定下列函數中的值

          (1)如果函數= x^2-3+2 +x+1是二次函數,則的值一定是______

          (2)如果函數=(-3)x^2-3+2+x+1是二次函數,則的值一定是______

          【設計意圖】此題著重復習二次函數的特征:自變量的最高次數為2次,且二次項系數不為0.

         。 小結思考:

          本節課你有哪些收獲?還有什么不清楚的地方?

          【設計意圖】讓學生來談本節課的收獲,培養學生自我檢查、自我小結的良好習慣,將知識進行整理并系統化。而且由此可了解到學生還有哪些不清楚的地方,以便在今后的教學中補充。

         。ㄆ撸 作業布置:

          必做題:

          1. 正方形的邊長為4,如果邊長增加x,則面積增加,求關于x 的函數關系式。這個函數是二次函數嗎?

          2. 在長20c,寬15c的矩形木板的四角上各鋸掉一個邊長為xc的正方形,寫出余下木板的面積(c2)與正方形邊長x(c)之間的函數關系,并注明自變量的取值范圍。

          選做題:

          1.已知函數 是二次函數,求的值。

          2.試在平面直角坐標系畫出二次函數=x2和=-x2圖象

          【設計意圖】作業中分為必做題與選做題,實施分層教學,體現新課標人人學有價值的數學,不同的人得到不同的發展。另外補充第4題,旨在激發學生繼續學習二次函數圖象的興趣。

          五、教學設計思考

          以實現教學目標為前提

          以現代教育理論為依據

          以現代信息技術為手段

          貫穿一個原則——以學生為主體的原則

          突出一個特色——充分鼓勵表揚的特色

          滲透一個意識——應用數學的意識

        【高中函數的概念說課稿】相關文章:

        課改下函數概念教育研討論文10-07

        高中數學《棱錐的概念和性質》說課稿范文11-30

        人教版高中數學《函數的最大值和最小值》說課稿范文12-01

        初中數學說課稿:反比例函數12-10

        tatic函數與普通函數的區別12-20

        高中物理概念認知體系的構建論文07-30

        高中地理概念教學的幾點做法的論文10-20

        高中數學概念教學探析論文09-03

        公積金的概念08-02

        PHP的壓縮函數11-15

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>