1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中數學說課稿

        時間:2021-08-12 10:09:07 高中說課稿 我要投稿

        實用的高中數學說課稿匯編七篇

          作為一位不辭辛勞的人民教師,有必要進行細致的說課稿準備工作,寫說課稿能有效幫助我們總結和提升講課技巧。那么寫說課稿需要注意哪些問題呢?以下是小編為大家收集的高中數學說課稿7篇,歡迎閱讀,希望大家能夠喜歡。

        實用的高中數學說課稿匯編七篇

        高中數學說課稿 篇1

          一、教材分析

         。ㄒ唬┑匚慌c作用

          《冪函數》選自高一數學新教材必修1第2章第3節。是基本初等函數之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。從教材的整體安排看,學習了解冪函數是為了讓學生進一步獲得比較系統的函數知識和研究函數的方法,為今后學習三角函數等其他函數打下良好的基礎.在初中曾經研究過y=x,y=x2,y=x—1三種冪函數。這節內容,是對初中有關內容的進一步的概括、歸納與發展,是與冪有關知識的高度升華.本節內容之后, 將把指數函數,對數函數,冪函數科學的組織起來,體現充滿在整個數學中的組織化,系統化的精神。讓學生了解系統研究一類函數的方法.這節課要特別讓學生去體會研究的方法,以便能將該方法遷移到對其他函數的研究.

         。ǘ⿲W情分析

          (1)學生已經接觸的函數,確立利用函數的定義域、值域、奇偶性、單調性研究一個函數的意識 ,已初步形成對數學問題的合作探究能力。

         。2)雖然前面學生已經學會用描點畫圖的方法來繪制指數函數,對數函數圖像,但是對于冪函數的圖像畫法仍然缺乏感性認識。

          (3)學生層次參差不齊,個體差異比較明顯。

          二、目標分析

          新課標指出“三維目標”是一個密切聯系的有機整體。

         。ㄒ唬┙虒W目標

         。1)知識與技能

          ①使學生理解冪函數的概念,會畫冪函數的圖象。

          ②讓學生結合這幾個冪函數的圖象,理解冪函圖象的變化情況和性質。

         。2)過程與方法

         、僮寣W生通過觀察、總結冪函數的性質,培養學生概括抽象和識圖能力。

         、谑箤W生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。

          (3)情感態度與價值觀

         、偻ㄟ^熟悉的例子讓學生消除對冪函數的陌生感從而引出概念,引起學生注意,激發學生的學習興趣。

         、诶枚嗝襟w,了解冪函數圖象的變化規律,使學生認識到現代技術在數學認知過程中的作用,從而激發學生的學習欲望。

          ③培養學生從特殊歸納出一般的意識,培養學生利用圖像研究函數奇偶性的能力。并引導學生發現數學中的對稱美,讓學生在畫圖與識圖中獲得學習的快樂。

         。ǘ┲攸c難點

          根據我對本節課的內容的理解,我將重難點定為:

          重點:從五個具體的冪函數中認識概念和性質

          難點:從冪函數的圖象中概括其性質。

          三、教法、學法分析

          (一)教法

          教學過程是教師和學生共同參與的過程,教師要善于啟發學生自主性學習,充分調動學生的積極性、主動性,要有效地滲透數學思想方法,努力去提高學生素質。根據這樣的原則和所要完成的教學目標,并為激發學生的學習興趣,我采用如下的教學方法。

          1、引導發現比較法

          因為有五個冪函數,所以可先通過學生動手畫出函數的圖象,觀察它們的解析式和圖象并從式的角度和形的角度發現異同,并進行比較,從而更深刻地領會冪函數概念以及五個冪函數的圖象與性質。

          2、借助信息技術輔助教學

          由于多媒體信息技術能具有形象生動易吸引學生注意的特點,故此,可用多媒體制作引入情境,將學生引到這節課的學習中來。再利用《幾何畫板》畫出五個冪函數的圖象,為學生創設豐富的數形結合環境,幫助學生更深刻地理解冪函數概念以及在冪函數中指數的變化對函數圖象形狀和單調性的影響,并由此歸納冪函數的性質。

          3、練習鞏固討論學習法

          這樣更能突出重點,解決難點,使學生既能夠進行深入地獨立思考又能與同學進行廣泛的交流與合作,這樣一來學生對這五個冪函數領會得會更加深刻,在這個過程中學生們分析問題和解決問題的能力得到進一步的提高,班級整體學習氛氛圍也變得更加濃厚。

         。ǘ⿲W法

          本節課主要是通過對冪函數模型的特征進行歸納,動手探索冪函數的圖像,觀察發現其有關性質,再改變觀察角度發現奇偶函數的特征。重在動手操作、觀察發現和歸納的過程。

          由于冪函數在第一象限的特征是學生不容易發現的問題,因此在教學過程中引導學生將抽象問題具體化,借助多媒體進行動態演化,以形成較完整的知識結構。

          四、教學過程分析

         。ㄒ唬┙虒W過程設計

          (1)創設情境,提出問題。 新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統目的明確的設計方式,給學生最大的思考空間,充分體現學生主體地位。

          問題1:下列問題中的函數各有什么共同特征?是否為指數函數?

          由學生討論,總結,即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1

          這時學生觀察可能有些困難,老師提示可以用x表示自變量,用y表示函數值,上述函數式變成:

          都是自變量的若干次冪的形式。都是形如

          的函數。

          揭示課題:今天這節課,我們就來研究:冪函數

         。ㄒ唬┱n堂主要內容

          (1)冪函數的概念

         、賰绾瘮档亩x。

          一般地,函數

          叫做冪函數,其中x 是自變量,a是常數。

          ②冪函數與指數函數之間的區別。

          冪函數——底數是自變量,指數是常數;

          指數函數——指數是自變量,底數是常數。

         。2)幾個常見冪函數的圖象和性質

          由同學們畫出下列常見的冪函數的圖象,并根據圖象將發現的性質填入表格

          根據上表的內容并結合圖象,總結函數的共同性質。讓學生交流,老師結合學生的回答組織學生總結出性質。

          以上問題的設計意圖:數形結合是一個重要的數學思想方法,它包含以數助形,和以形助數的思想。通過問題設計讓學生著手實際,借助行的生動來闡明冪函數的性質。

          教師講評:冪函數的性質.

         、偎械膬绾瘮翟冢0,+∞)上都有定義,并且圖像都過點(1,1).

         、谌绻鸻>0,則冪函數的圖像通過原點,并在區間〔0,+∞)上是增函數.

         、廴绻鸻<0,則冪函數在(0,+∞)上是減函數,在第一象限內,當x從右邊趨向于原點時,圖像在y軸右方無限地趨近y軸;當x趨向于+∞時,圖像在x軸上方無限地趨近x軸.

         、墚攁為奇數時,冪函數為奇函數;當a為偶數時,冪函數為偶函數。

          以問題設計為主,通過問題,讓學生由已經學過的指數函數,對數函數,描點作圖得到五個冪函數的圖像,但是我們應該知道繪制冪函數的圖像比繪制指數函數和對數函數的圖像更為復雜,因為冪函數隨著冪指數的輕微變化會出現較大的變化,因此,在描點作圖之前,應引導學生對幾個特殊的冪函數的性質先進行初步的探究,如分析函數的定義域,奇偶性等,在根據研究結果和描點作圖畫出圖像,讓學生觀察所作圖像特征,并由圖象特征得到相應的函數性質,讓學生充分體會系統的研究方法。同時學生對于歸納性質這一環節相對指數函數,對數函數的性質,學生會有更大的困難。因此,教學中只須對他們的圖像與基本性質進行認識,而不必在一般冪函數上作過多的引申和介紹。在教學中,采用從具體到一般,再從一般到具體的安排。

          通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。

          (3)當堂訓練,鞏固深化

          例題和練習題的選取應結合學生認知探究,鞏固本節課的重點知識,并能用知識加以運用。本節課選取主要選取了兩道例題。

          例1是課本上的例題:證明f(x)=x1/2在(0,+∞)上是增函數。這題先從“形”的角度判斷函數的單調區間和單調性,再用到定義從“數”的角度對函數的單調性進行推理論證,培養學生的數形結合的數學思想和解決問題的專業素養。

          例2是補充例題,主要培養學生根據體例構造出函數,并利用函數的性質來解決問題的能力,從而加深學生對冪函數及其性質的理解。注意:由于學生對冪函數還不是很熟悉,所以在講評中要刻意體現出冪函數y=x1。3是增函數與y=x—5/4的圖像的畫法,即再一次讓學生體會根據解析式來畫圖像解題這一基本思路

         。4)小結歸納,回顧反思。 小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。我設計了三個問題:

         。1)通過本節課的學習,你學到了哪些知識?

         。2)通過本節課的學習,你最大的體驗是什么?

         。3)通過本節課的學習,你掌握了哪些技能?

         。ǘ┳鳂I設計 作業分為必做題和選做題,必做題對本節課學生知識水平的反饋,選做題是對本節課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展、合作探究的學習氛圍的形成. 我設計了以下作業:

         。1)必做題

          (2)選做題

         。ㄈ┌鍟O計

          板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。

          五、評價分析

          學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對冪函數是否有一個完整的集訓,并進行及時的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。

          謝謝!

        高中數學說課稿 篇2

          1、對教材地位與作用的認識

          在高中數學教學中,作為數學思想應向學生滲透,強化的有:函數與方程思想;數形結合思想;分類討論思想;等價轉化及運動變化思想。不是所有的課都能把這些思想自然的容納進去,但由于“曲線和方程”這一節在教材中的特殊地位,它把代數和幾何兩個單科自然而緊密地結合在一起,因而上述思想能用到大半,這不能不引起我們教師的重視!扒和方程”這節教材揭示了幾何中的形與代數中的數相統一的關系,為“依形判數”與“就數論形”的相互轉化開辟了途徑,這正體現了解析幾何這門課的基本思想,用代數的方法研究幾何問題!鼻與方程”是解析幾何中最為重要的基本內容之一.在理論上它是基礎,在應用上它是工具,對全部解析幾何的教學有著深遠的影響,另外在高考中也是考察的重點內容,尤其是求曲線的方程,學生只有透徹理解了曲線與方程的含義,才算是找到了解析幾何學習得入門之路。應該認識到這節“曲線和方程”得開頭課是解析幾何教學的“重頭戲”!

          2、教學目標的確定及依據

          (大綱的要求)通過本小節的學習,要使學生了解解析幾何的基本思想,了解用坐標法研究幾何問題的初步知識和觀點,理解曲線的方程和方程的曲線的意義,初步掌握求曲線的方程的方法.所以第一課我在教學目標上是這樣設定的:

          1).了解曲線上的點與方程的解之間的一一對應關系,領會“曲線的方程”與“方程的曲線”的概念及其關系,并能作簡單的判斷與推理;

          2).在形成概念的過程中,培養分析、抽象和概括等思維能力;

          3)會證明已知曲線的方程。

          本節課的教學目標定在“初步掌握”的水平上,但“初步”絕不等同于“含糊”,它反應在學生的學習行為上,即要求學生能答出曲線與方程間必須滿足的兩個關系,才能稱作“方程的曲線”和“曲線的方程”,兩者缺一不可,并能借助實例進一步明確這二者的區別。知識的學習與能力的培養是同步的,在具體操作上結合圖形分析與反例,來辨析“兩個關系”之間的區別,從認識特例到歸納出曲線的方程和方程的曲線一般概念,因而在形成概念的過程中,培養學生分析、抽象、概括的思維能力.會證明已知曲線的方程就能更進一步的理解曲線和方程概念的含義并為下節課求曲線的方程打基礎.

          3、如何突破重難點

          本小節的重點是理解曲線與方程的有關概念與相互聯系,以及求曲線方程的方法、步驟.只有深刻理解了曲線與方程的含義,才能真正掌握好求曲線軌跡方程的一般方法,進一步學好后面的內容.曲線和方程的概念比較抽象,由直觀表象到抽象概念有相當難度,對學生理解上可能遇到的問題是學生不理解“曲線上的點的坐標都是方程的解”和”“以這個方程的解為坐標的點都是曲線上的點”這兩句話在揭示“曲線和方程”關系各自所起的作用。有的學生只從字面上死記硬背;有的學生甚至誤以為這兩句話是同義反復。要突破這一點,關鍵在于利用充要條件,函數圖象,直線和方程,軌跡等知.識,正反兩方面說明問題.

          本節課的難點在于對定義中為什么要規定兩個關系(純粹性和完備性)產生困惑,原因是不理解兩者缺任何一個都將擴大概念的外延。

          4、對教學過程的設計

          今天要講的“曲線和方程”這部分教材的內容主要包括“曲線方程的概念”,“已知曲線求它的方程”、“已知方程作出它的曲線”等。在課時安排上分為3個課時進行教學,具體的課時分配是:第一課時講解“曲線與方程”和“方程與曲線”的概念及其關系;第二課時講解求曲線的方程一般方法,第三課時為習題課,通過練習來總結、鞏固和深化本節知識。如果以為學生不真正領悟曲線和方程得關系照樣能求出方程,照樣能計算某些難題,因而可以忽視這個基本概念得教學,這不能不說是一種“舍本逐末”得偏見。

          在教材中,曲線和方程這一概念是隨著知識的講授而不斷深化,逐步為學生所理解,因而教材中從直線開始,多次,重復地闡述,這說明其重要性.同時也說明理解它,掌握它確實需要一個過程.數學本身是很抽象,把數學和實際問題相結合才能激發學生的學習興趣,真正達到素質教育的要求。根據以上考慮,確定了這節課教學過程的基本線索是:實際問題引入,提出課題→運用反例,揭示內涵→討論歸納,得出定義→集合表述,強化理解→知識應用,反復辨析。

          教材的編寫也往往體現著教法.,例如,本節一開頭說“我們研究過直線的各種方程,討論了直線和二元一次方程的關系!睂W生已經有了用方程(有時用函數式的形式出現)表示曲線的感性認識,在本節教學中充分發揮這些感性認識的作用。從人造地球衛星運行的軌道等生動形象的實際問題引入,引起學生的興趣和好奇心以及對數學的應用有了更高的認識,更激發他們進一步學好數學的決心。(具體……)提出課題。運用學生熟知的知識,1)求線段AB的垂直平分線方程和2)作出方程y=x2的圖象作為引例,從曲線到方程,從方程到曲線兩方面入手分析了曲線上的點和方程的解之間的關系,為形成曲線和方程的概念提供了實際模型,但是如果就此而由教師直接給出結論,那就不僅會失去開發學生思維的機會,影響學生的理解,而且會使教學變得枯燥乏味,抑制了學生學習的主動性和積極性,接著用反例來突破難點。通過反例1)直線去掉第三象限部分,則方程y=x的解為坐標的點不都在曲線上,以及2)改方程為,那么曲線上就混有不滿足方程的點坐標就此揭示“兩者缺一”與直覺的矛盾,通過舉反例和步步追問使我要的答案逐步明了,從而又促使學生對概念表述的嚴格性進行探索,學生自已認識曲線和方程的概念必須要具備的兩個關系,培養學生分析,歸納問題的能力,自然得出定義。并且把這個關系板書到黑板上,以示這就是這節課的重點。為了在重難點有所突破后強化其認識,又用集合相等的概念來解釋曲線和方程的對應關系,并以此為工具來分析實例,這將有助于學生的理解,有助于學生通其法,知其理。

          然后通過運用與練習,糾正錯誤的認識,促使對概念的正確理解,通過反復重現,可以不斷領悟,加強識記。所以安排了例1,例2(見課件)目的也在于幫助學生正確理解概念,通過解題辨析“兩個關系”,實現本節課的教學目標,為此題目中的“曲線”和“方程”都力求簡單,由此得出點在曲線上的充要條件。

          曲線是符合某種條件的點的軌跡,為了下節課“求曲線的方程”的教學,安排了例3(見課件)證明曲線的方程,增加學生的感性認識,由于教材上有嚴謹的證明過程,讓學生閱讀并總結證明已知曲線的方程的方法和步驟,上升到理論上,可以培養學生獨立思考,閱讀歸納的能力。為了讓學生更深入的理解這節課的主要內容,通過4個變式引申檢查他們的掌握程度,但難度不能太大,我選擇這樣幾個練習:(略)簡單評講后小結本課的主要內容,進一步強化“曲線和方程”概念中兩個關系缺一不可,只有符合關系1)2)才能進行數與形的轉化。由于下節課的內容是求曲線的方程,特地安排了一個思考探索題。

          5、對學生學習活動的引導和組織

          教案的設計與教案的實施往往有一定的距離,本節課有著概念性強,思維量大,例題與練習題不多的特點,這就決定了整節課將以學生的觀察、思考、討論為主,通過提問,舉例,啟發,互動完成教學,在具體操作上比較靈活,視學生的具體情況而定,把握學生的思維規律于數學思想的基本方法。例如,在概念教學中引導學生看反例,通過正反對比的方法,當學生觀察了例1回答不清為什么,可以舉出幾個點的坐標作檢驗,這就是”從特殊到一般“的方法:或引導學生看圖,比比劃劃,這就是“從直觀到抽象”的方法。只要啟發方法符合學生的認識規律,學生的認識活動就會順利展開,而且在認知的過程中訓練了探索的能力。強化數形結合、化歸與轉化的數學思想方法,完善學生的數學的結構,讓學生動手、動腦,以及觀察、聯想、猜測、歸納等合理推理,鼓勵學生多向思維、積極思考,勇于探索,從中培養學生合情推理能力,數學交流與合作能力以及主動參與的精神。

        高中數學說課稿 篇3

          一、說教材:

          1. 地位及作用:

          “橢圓及其標準方程”是高中《解析幾何》第二章第七節內容,是本書的重點內容之一,也是歷年高考、會考的必考內容,是在學完求曲線方程的基礎上,進一步研究橢圓的特性,以完成對圓錐曲線的全面研究,為今后的學習打好基礎,因此本節內容具有承前啟后的作用。

          2. 教學目標:

          根據《教學大綱》,《考試說明》的要求,并根據教材的具體內容和學生的實際情況,確定本節課的教學目標:

          (1)知識目標:掌握橢圓的定義和標準方程,以及它們的應用。

         。2)能力目標:

         。╝)培養學生靈活應用知識的能力。

         。╞) 培養學生全面分析問題和解決問題的能力。

         。╟)培養學生快速準確的運算能力。

         。3)德育目標:培養學生數形結合思想,類比、分類討論的思想以及確立從感性到理性認識的辯證唯物主義觀點。

          3. 重點、難點和關鍵點:

          因為橢圓的定義和標準方程是解決與橢圓有關問題的重要依據,也是研究雙曲線和拋物線的基礎,因此,它是本節教材的重點;由于學生推理歸納能力較低,在推導橢圓的標準方程時涉及到根式的兩次平方,并且運算也較繁,因此它是本節課的難點;坐標系建立的好壞直接影響標準方程的推導和化簡,因此建立一個適當的直角坐標系是本節的關鍵。

          二、 說教材處理

          為了完成本節課的教學目標,突出重點、分散難點、根據教材的內容和學生的實際情況,對教材做以下的處理:

          1.學生狀況分析及對策:

          2.教材內容的組織和安排:

          本節教材的處理上按照人們認識事物的規律,遵循由淺入深,循序漸進,層層深入的原則組織和安排如下:

          (1)復習提問(2)引入新課(3)新課講解(4)反饋練習(5)歸納總結(6)布置作業

          三、 說教法和學法

          1.為了充分調動學生學習的積極性,是學生變被動學習為主動而愉快的學習,引導學生自己動手,讓學生的思維活動在教師的引導下層層展開。請學生參與課堂。加強方程推導的指導,是傳授知識與培養能力有機的溶為一體,為此,本節課采用“引導教學法”。

          2.利用電腦所畫圖形的動態演示總結規律。同時利用電腦的動態演示激發學生的學習興趣。

          四、 教學過程

          教學環節

          3.設a(-2,0),b(2,0),三角形abp周長為10,動點p軌跡方程。

          例1屬基礎,主要反饋學生掌握基本知識的程度。

          例2可強化基本技能訓練和基本知識的靈活運用。

          小結

          為使學生對本節內容有一個完整深刻的認識,教師引導學生從以下幾個方面進行小結。

          1.橢圓的定義和標準方程及其應用。

          2.橢圓標準方程中a,b,c諸關系。

          3.求橢圓方程常用方法和基本思路。

          通過小結形成知識體系,加深對本節知識的理解培養學生的歸納總結能力,增強學生學好圓錐曲線的信心。

          布置作業

         。1) 77頁——78頁 1,2,3,79頁 11

         。2) 預習下節內容

          鞏固本節所學概念,強化基本技能訓練,培養學生良好的學習習慣和品質,發現和彌補教學中的遺漏和不足。

        高中數學說課稿 篇4

        尊敬的各位專家、評委:

          下午好!

          我的抽簽序號是___,今天我說課的課題是《______》第__課時。 我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、教法學法分析、教學過程分析和評價分析四方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。

          一、教材分析

         。ㄒ唬┑匚慌c作用

          數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面數列作為一種特殊的函數與函數思想密不可分;另一方面學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。

         。ǘ⿲W情分析

          (1)學生已熟練掌握_________________。

         。2)學生的知識經驗較豐富,具備了教強的抽象思維能力和演繹推理能力。

         。3)學生思維活潑,積極性高,已初步形成對數學問題的合作探究能力。

         。4) 學生層次參次不齊,個體差異比較明顯。

          二、目標分析

          新課標指出“三維目標”是一個密切聯系的有機整體,應該以獲得知識與技能的過程,同時成為學會學習和正確價值觀。這要求我們在教學中以知識技能的培養為主線,透情感態度與價值觀,并把這兩者充分體現在教學過程中,新課標指出教學的主體是學生,因此目標的.制定和設計必須從學生的角度出發,根據__在教材內容中的地位與作用,結合學情分析,本節課教學應實現如下教學目標:

         。ㄒ唬┙虒W目標

         。1)知識與技能

          使學生理解函數單調性的概念,初步掌握判別函數單調性的方法;。

         。2)過程與方法

          引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡單的問題;使學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。

         。3)情感態度與價值觀

          在函數單調性的學習過程中,使學生體驗數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。

         。ǘ┲攸c難點

          本節課的教學重點是________,教學難點是_________。

          三、教法、學法分析

         。ㄒ唬┙谭

          基于本節課的內容特點和高二學生的年齡特征,按照臨沂市高中數學“三五四”課堂教學策略,采用探究――體驗教學法為主來完成教學,為了實現本節課的教學目標,在教法上我采取了:

          1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發學生求知欲,調動學生主體參與的積極性.

          2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念.

          3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹的推理,并順利地完成書面表達.

          (二)學法在學法上我重視了: 1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。 2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和分析解決問題的能力。

          四、教學過程分析

         。ㄒ唬┙虒W過程設計

          教學是一個教師的“導”,學生的“學”以及教學過程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發、誘導、激勵、評價等為學生的學習搭建支架,把學習的任務轉移給學生,學生就是接受任務,探究問題、完成任務。如果在教學過程中把“教與學”完美的結合也就是以“問題”為核心,通過對知識的發生、發展和運用過程的演繹、解釋和探究來組織和推動教學。

         。1)創設情境,提出問題。 新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節課的教學中,從我們熟悉的生活情境中提出問題,問題的

          設計改變了傳統目的明確的設計方式,給學生最大的思考空間,充分體現學生主體地位。

         。2)引導探究,建構概念。 數學概念的形成來自解決實際問題和數學自身發展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經驗和已有的知識基礎出發,經歷“數學化”、“再創造”的活動過程.

          (3)自我嘗試,初步應用。 有效的數學學習過程,不能單純的模仿與記憶,數學思想的領悟和學習過程更是如此。讓學生在解題過程中親身經歷和實踐體驗,師生互動學習,生生合作交流,共同探究.

         。4)當堂訓練,鞏固深化。 通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。

         。5)小結歸納,回顧反思。 小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。我設計了三個問題:(1)通過本節課的學習,你學到了哪些知識?(2)通過本節課的學習,你最大的體驗是什么?(3)通過本節課的學習,你掌握了哪些技能?

         。ǘ┳鳂I設計

          作業分為必做題和選做題,必做題對本節課學生知識水平的反饋,選做題是對本節課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展、合作探究的學習氛圍的形成.

          我設計了以下作業: (1)必做題 (2)選做題

         。ㄈ┌鍟O計 板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。

          五、評價分析

          學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對____是否有一個完整的集訓,并進行及時的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。 謝謝!

        高中數學說課稿 篇5

          說課內容:普通高中課程標準實驗教科書(人教A版)《數學必修4》第二章第四節“平面向量的數量積”的第一課時---平面向量數量積的物理背景及其含義。

          下面,我從背景分析、教學目標設計、課堂結構設計、教學過程設計、教學媒體設計及教學評價設計六個方面對本節課的思考進行說明。

          一、 背景分析

          1、學習任務分析

          平面向量的數量積是繼向量的線性運算之后的又一重要運算,也是高中數學的一個重要概念,在數學、物理等學科中應用十分廣泛。本節內容教材共安排兩課時,其中第一課時主要研究數量積的概念,第二課時主要研究數量積的坐標運算,本節課是第一課時。

          本節課的主要學習任務是通過物理中“功”的事例抽象出平面向量數量積的概念,在此基礎上探究數量積的性質與運算律,使學生體會類比的思想方法,進一步培養學生的抽象概括和推理論證的能力。其中數量積的概念既是對物理背景的抽象,又是研究性質和運算律的基礎。同時也因為在這個概念中,既有長度又有角度,既有形又有數,是代數、幾何與三角的最佳結合點,不僅應用廣泛,而且很好的體現了數形結合的數學思想,使得數量積的概念成為本節課的核心概念,自然也是本節課教學的重點。

          2、學生情況分析

          學生在學習本節內容之前,已熟知了實數的運算體系,掌握了向量的概念及其線性運算,具備了功等物理知識,并且初步體會了研究向量運算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發,在與實數運算類比的基礎上研究性質和運算律。這為學生學習數量積做了很好的鋪墊,使學生倍感親切。但也正是這些干擾了學生對數量積概念的理解,一方面,相對于線性運算而言,數量積的結果發生了本質的變化,兩個有形有數的向量經過數量積運算后,形卻消失了,學生對這一點是很難接受的;另一方面,由于受實數乘法運算的影響,也會造成學生對數量積理解上的偏差,特別是對性質和運算律的理解。因而本節課教學的難點數量積的概念。

          二、 教學目標設計

          《普通高中數學課程標準(實驗)》 對本節課的要求有以下三條:

          (1)通過物理中“功”等事例,理解平面向量數量積的含義及其物理意義。

          (2)體會平面向量的數量積與向量投影的關系。

          (3)能用運數量積表示兩個向量的夾角,會用數量積判斷兩個平面向量的垂直關系。

          從以上的背景分析可以看出,數量積的概念既是本節課的重點,也是難點。為了突破這一難點,首先無論是在概念的引入還是應用過程中,物理中“功”的實例都發揮了重要作用。其次,作為數量積概念延伸的性質和運算律,不僅能夠使學生更加全面深刻地理解概念,同時也是進行相關計算和判斷的理論依據。最后,無論是數量積的性質還是運算律,都希望學生在類比的基礎上,通過主動探究來發現,因而對培養學生的抽象概括能力、推理論證能力和類比思想都無疑是很好的載體。

          綜上所述,結合“課標”要求和學生實際,我將本節課的教學目標定為:

          1、了解平面向量數量積的物理背景,理解數量積的含義及其物理意義;

          2、體會平面向量的數量積與向量投影的關系,掌握數量積的性質和運算律,

          并能運用性質和運算律進行相關的運算和判斷;

          3、體會類比的數學思想和方法,進一步培養學生抽象概括、推理論證的能力。

          三、課堂結構設計

          本節課從總體上講是一節概念教學,依據數學課程改革應關注知識的發生和發展過程的理念,結合本節課的知識的邏輯關系,我按照以下順序安排本節課的教學:

          即先從數學和物理兩個角度創設問題情景,通過歸納和抽象得到數量積的概念,在此基礎上研究數量積的性質和運算律,使學生進一步加深對概念的理解,然后通過例題和練習使學生鞏固概念,加深印象,最后通過課堂小結提高學生認識,形成知識體系。

          四、 教學媒體設計

          和“大綱”教材相比,“課標”教材在本節課的內容安排上,雖然將向量的夾角在“平面向量基本定理”一節提前做了介紹,但卻將原來分兩節課完成的內容合并成一節,相比較而言本節課的教學任務加重了許多。為了保證教學任務的完成,順利實現本節課的教學目標,考慮到本節課的實際特點,在教學媒體的使用上,我的設想主要有以下兩點:

          1、制作高效實用的電腦多媒體課件,主要作用是改變相關內容的呈現方式,以此來節約課時,增加課堂容量。

          2、設計科學合理的板書(見下),一方面使學生加深對主要知識的印象,另一方面使學生清楚本節內容知識間的邏輯關系,形成知識網絡。

          平面向量數量積的物理背景及其含義

          一、 數量積的概念 二、數量積的性質 四、應用與提高

          1、 概念: 例1:

          2、 概念強調 (1)記法 例2:

          (2)“規定” 三、數量積的運算律 例3:

          3、幾何意義:

          4、物理意義:

          五、 教學過程設計

          課標指出:數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發展的過程。為有序、有效地進行教學,本節課我主要安排以下六個活動:

          活動一:創設問題情景,激發學習興趣

          正如教材主編寄語所言,數學是自然的,而不是強加于人的。平面向量的數量積這一重要概念,和向量的線性運算一樣,也有其數學背景和物理背景,為了體現這一點,我設計以下幾個問題:

          問題1:我們已經研究了向量的哪些運算?這些運算的結果是什么?

          問題2:我們是怎么引入向量的加法運算的?我們又是按照怎樣的順序研究了這種運算的?

          期望學生回答:物理模型→概念→性質→運算律→應用

          問題3:如圖所示,一物體在力F的作用下產生位移S,

          (1)力F所做的功W= 。

          (2)請同學們分析這個公式的特點:

          W(功)是 量,

          F(力)是 量,

          S(位移)是 量,

          α是 。

          問題1的設計意圖在于使學生了解數量積的數學背景,讓學生明白本節課所要研究的數量積與向量的加法、減法及數乘一樣,都是向量的運算,但與向量的線性運算相比,數量積運算又有其特殊性,那就是其結果發生了本質的變化。

          問題2的設計意圖在于使學生在與向量加法類比的基礎上明了本節課的研究方法和順序,為教學活動指明方向。

          問題3的設計意圖在于使學生了解數量積的物理背景,讓學生知道,我們研究數量積絕不僅僅是為了數學自身的完善,而是有其客觀背景和現實意義的,從而產生了進一步研究這種新運算的愿望。同時,也為抽象數量積的概念做好鋪墊。

          活動二:探究數量積的概念

          1、概念的抽象

          在分析“功”的計算公式的基礎上提出問題4

          問題4:你能用文字語言來表述功的計算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結果又該如何表述?

          學生通過思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個向量的大小及其夾角余弦的乘積。這樣,學生事實上已經得到數量積概念的文字表述了,在此基礎上,我進一步明晰數量積的概念。

          2、概念的明晰

          已知兩個非零向量

          與

          ,它們的夾角為

          ,我們把數量 ︱

          ︱·︱

          ︱cos

          叫做

          與

          的數量積(或內積),記作:

          ·

          ,即:

          ·

          = ︱

          ︱·︱

          ︱cos

          在強調記法和“規定”后 ,為了讓學生進一步認識這一概念,提出問題5

          問題5:向量的數量積運算與線性運算的結果有什么不同?影響數量積大小的因素有哪些?并完成下表:

          角

          的范圍0°≤

          <90°

          =90°0°<

          ≤180°

          ·

          的符號

          通過此環節不僅使學生認識到數量積的結果與線性運算的結果有著本質的不同,而且認識到向量的夾角是決定數量積結果的重要因素,為下面更好地理解數量積的性質和運算律做好鋪墊。

          3、探究數量積的幾何意義

          這個問題教材是這樣安排的:在給出向量數量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運算律的第三條才直接以結論的形式呈現給學生,我覺得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學生自己歸納得出,所以做了調整。為此,我首先給出給出向量投影的概念,然后提出問題5。

          如圖,我們把│

          │cos

          (│

          │cos

          )叫做向量

          在

          方向上(

          在

          方向上)的投影,記做:OB1=│

          │cos

          問題6:數量積的幾何意義是什么?

          這樣做不僅讓學生從“形”的角度重新認識數量積的概念,從中體會數量積與向量投影的關系,同時也更符合知識的連貫性,而且也節約了課時。

          4、研究數量積的物理意義

          數量積的概念是由物理中功的概念引出的,學習了數量積的概念后,學生就會明白功的數學本質就是力與位移的數量積。為此,我設計以下問題 一方面使學生嘗試計算數量積,另一方面使學生理解數量積的物理意義,同時也為數量積的性質埋下伏筆。

          問題7:

          (1) 請同學們用一句話來概括功的數學本質:功是力與位移的數量積 。

          (2)嘗試練習:一物體質量是10千克,分別做以下運動:

         、、在水平面上位移為10米;

         、凇⒇Q直下降10米;

         、、豎直向上提升10米;

         、堋⒀貎A角為30度的斜面向上運動10米;

          分別求重力做的功。

          活動三:探究數量積的運算性質

          1、性質的發現

          教材中關于數量積的三條性質是以探究的形式出現的,為了很好地完成這一探究活動,在完成上述練習后,我不失時機地提出問題8:

          (1)將嘗試練習中的① ② ③的結論推廣到一般向量,你能得到哪些結論?

          (2)比較︱

          ·

          ︱與︱

          ︱×︱

          ︱的大小,你有什么結論?

          在學生討論交流的基礎上,教師進一步明晰數量積的性質,然后再由學生利用數量積的定義給予證明,完成探究活動。

          2、明晰數量積的性質

          3、性質的證明

          這樣設計體現了教師只是教學活動的引領者,而學生才是學習活動的主體,讓學生成為學習的研究者,不斷地體驗到成功的喜悅,激發學生參與學習活動的熱情,不僅使學生獲得了知識,更培養了學生由特殊到一般的思維品質。

          活動四:探究數量積的運算律

          1、運算律的發現

          關于運算律,教材仍然是以探究的形式出現,為此,首先提出問題9

          問題9:我們學過了實數乘法的哪些運算律?這些運算律對向量是否也適用?

          通過此問題主要是想使學生在類比的基礎上,猜測提出數量積的運算律。

          學生可能會提出以下猜測: ①

          ·

          =

          ·

         、(

          ·

          )

          =

          (

          ·

          ) ③(

          +

          )·

          =

          ·

          +

          ·

          猜測①的正確性是顯而易見的。

          關于猜測②的正確性,我提示學生思考下面的問題:

          猜測②的左右兩邊的結果各是什么?它們一定相等嗎?

          學生通過討論不難發現,猜測②是不正確的。

          這時教師在肯定猜測③的基礎上明晰數量積的運算律:

          2、明晰數量積的運算律

          3、證明運算律

          學生獨立證明運算律(2)

          我把運算運算律(2)的證明交給學生完成,在證明時,學生可能只考慮到λ>0的情況,為了幫助學生完善證明,提出以下問題:

          當λ<0時,向量

          與λ

          ,

          與λ

          的方向 的關系如何?此時,向量λ

          與

          及

          與λ

          的夾角與向量

          與

          的夾角相等嗎?

          師生共同證明運算律(3)

          運算律(3)的證明對學生來說是比較困難的,為了節約課時,這個證明由師生共同完成,我想這也是教材的本意。

          在這個環節中,我仍然是首先為學生創設情景,讓學生在類比的基礎上進行猜想歸納,然后教師明晰結論,最后再完成證明,這樣做不僅培養了學生推理論證的能力,同時也增強了學生類比創新的意識,將知識的獲得和能力的培養有機的結合在一起。

          活動五:應用與提高

          例1、(師生共同完成)已知︱

          ︱=6,︱

          ︱=4,

          與

          的夾角為60°,求

          (

          +2

          )·(

          -3

          ),并思考此運算過程類似于哪種運算?

          例2、(學生獨立完成)對任意向量

          ,b是否有以下結論:

          (1)(

          +

          )2=

          2+2

          ·

          +

          2

          (2)(

          +

          )·(

          -

          )=

          2—

          2

          例3、(師生共同完成)已知︱

          ︱=3,︱

          ︱=4, 且

          與

          不共線,k為何值時,向量

          +k

          與

          -k

          互相垂直?并思考:通過本題你有什么收獲?

          本節教材共安排了四道例題,我根據學生實際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數量積的性質和運算律的綜合應用,教學時,我重點從對運算原理的分析和運算過程的規范書寫兩個方面加強示范。完成計算后,進一步提出問題:此運算過程類似于哪種運算?目的是想讓學生在類比多項式乘法的基礎上自己猜測提出例2給出的兩個公式,再由學生獨立完成證明,一方面這并不困難,另一方面培養了學生通過類比這一思維模式達到創新的目的。例3的主要作用是,在繼續鞏固性質和運算律的同時,教給學生如何利用數量積來判斷兩個向量的垂直,是平面向量數量積的基本應用之一,教學時重點給學生分析數與形的轉化原理。

          為了使學生更好的理解數量積的含義,熟練掌握性質及運算律,并能夠應用數量積解決有關問題,再安排如下練習:

          1、 下列兩個命題正確嗎?為什么?

         、、若

          ≠0,則對任一非零向量

          ,有

          ·

          ≠0.

         、、若

          ≠0,

          ·

          =

          ·

          ,則

          =

          .

          2、已知△ABC中,

          =

          ,

          =

          ,當

          ·

          <0或

          ·

          =0時,試判斷△ABC的形狀。

          安排練習1的主要目的是,使學生在與實數乘法比較的基礎上全面認識數量積這一重要運算,

          通過練習2使學生學會用數量積表示兩個向量的夾角,進一步感受數量積的應用價值。

          活動六:小結提升與作業布置

          1、本節課我們學習的主要內容是什么?

          2、平面向量數量積的兩個基本應用是什么?

          3、我們是按照怎樣的思維模式進行概念的歸納和性質的探究?在運算律的探究過程中,滲透了哪些數學思想?

          4、類比向量的線性運算,我們還應該怎樣研究數量積?

          通過上述問題,使學生不僅對本節課的知識、技能及方法有了更加全面深刻的認識,同時也為下

          一節做好鋪墊,繼續激發學生的求知欲。

          布置作業:

          1、課本P121習題2.4A組1、2、3。

          2、拓展與提高:

          已知

          與

          都是非零向量,且

          +3

          與7

          -5

          垂直,

          -4

          與 7

          -2

          垂直求

          與

          的夾角。

          在這個環節中,我首先考慮檢測全體學生是否都達到了“課標”的基本要求,因此安排了一組教材中的習題,目的是讓所有的學生繼續加深對數量積概念的理解和應用,為后續學習打好基礎。其次,為了能讓不同的學生在數學領域得到不同的發展,我又安排了一道有一定難度的問題供學有余力的同學選做。

          六、教學評價設計

          評價方式的轉變是新課程改革的一大亮點,課標指出:相對于結果,過程更能反映每個學生的發展變化,體現出學生成長的歷程。因此,數學學習的評價既要重視結果,也要重視過程。結合“課標”對數學學習的評價建議,對本節課的教學我主要通過以下幾種方式進行:

          1、 通過與學生的問答交流,發現其思維過程,在鼓勵的基礎上,糾正偏差,并對其進行定

          性的評價。

          2、在學生討論、交流、協作時,教師通過觀察,就個別或整體參與活動的態度和表現做出評價,以此來調動學生參與活動的積極性。

          3、 通過練習來檢驗學生學習的效果,并在講評中,肯定優點,指出不足。

          4、 通過作業,反饋信息,再次對本節課做出評價,以便查漏補缺。

        高中數學說課稿 篇6

          一、教材分析

          1!吨笖岛瘮怠吩诮滩闹械牡匚弧⒆饔煤吞攸c

          《指數函數》是人教版高中數學(必修)第一冊第二章“函數”的第六節內容,是在學習了《指數》一節內容之后編排的。通過本節課的學習,既可以對指數和函數的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數、對數函數尤其是利用互為反函數的圖象間的關系來研究對數函數的性質打下堅實的概念和圖象基礎,又因為《指數函數》是進入高中以后學生遇到的第一個系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學習基礎,所以《指數函數》不僅是本章《函數》的重點內容,也是高中學段的主要研究內容之一,有著不可替代的重要作用。

          此外,《指數函數》的知識與我們的日常生產、生活和科學研究有著緊密的聯系,尤其體現在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現實意義。本節內容的特點之一是概念性強,特點之二是凸顯了數學圖形在研究函數性質時的重要作用。

          2。教學目標、重點和難點

          通過初中學段的學習和高中對集合、函數等知識的系統學習,學生對函數和圖象的關系已經構建了一定的認知結構,主要體現在三個方面:

          知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡單的函數概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數初步轉化到從集合與對應的觀點來認識函數。

          技能維度:學生對采用“描點法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質做好準備。

          素質維度:由觀察到抽象的數學活動過程已有一定的體會,已初步了解了數形結合的思想。

          鑒于對學生已有的知識基礎和認知能力的分析,根據《教學大綱》的要求,我確定本節課的教學目標、教學重點和難點如下:

          (1)知識目標:①掌握指數函數的概念;②掌握指數函數的圖象和性質;③能初步利用指數函數的概念解決實際問題;

         。2)技能目標:①滲透數形結合的基本數學思想方法②培養學生觀察、聯想、類比、猜測、歸納的能力;

         。3)情感目標:①體驗從特殊到一般的學習規律,認識事物之間的普遍聯系與相互轉化,培養學生用聯系的觀點看問題②通過教學互動促進師生情感,激發學生的學習興趣,提高學生抽象、概括、分析、綜合的能力③領會數學科學的應用價值。

         。4)教學重點:指數函數的圖象和性質。

          (5)教學難點:指數函數的圖象性質與底數a的關系。

          突破難點的關鍵:尋找新知生長點,建立新舊知識的聯系,在理解概念的基礎上充分結合圖象,利用數形結合來掃清障礙。

          二、教法設計

          由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過這一節課的教學達到不僅使學生初步理解并能簡單應用指數函數的知識,更期望能引領學生掌握研究初等函數圖象性質的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學生學習能力的目的,我根據自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:

          1。創設問題情景。按照指數函數的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。

          2。強化“指數函數”概念。引導學生結合指數的有關概念來歸納出指數函數的定義,并向學生指出指數函數的形式特點,請學生思考對于底數a是否需要限制,如不限制會有什么問題出現,這樣避免了學生對于底數a范圍分類的不清楚,也為研究指數函數的圖象做了“分類討論”的鋪墊。

          3。突出圖象的作用。在數學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數學家曾經說過“數離形時少直觀,形離數時難入微”,而在研究指數函數的性質時,更是直接由圖象觀察得出性質,因此圖象發揮了主要的作用。

          4。注意數學與生活和實踐的聯系。數學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關的生活問題,力圖使學生了解到數學的基礎學科作用,培養學生的數學應用意識。

          三、學法指導

          本節課是在學習完“指數”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:

          1。再現原有認知結構。在引入兩個生活實例后,請學生回憶有關指數的概念,幫助學生再現原有認知結構,為理解指數函數的概念做好準備。

          2。領會常見數學思想方法。在借助圖象研究指數函數的性質時會遇到分類討論、數形結合等基本數學思想方法,這些方法將會貫穿整個高中的數學學習。

          3。在互相交流和自主探

        高中數學說課稿 篇7

          一、教材分析:

          1、教材的地位與作用。

          本節內容是在學生學習了“事件的可能性的基礎上來學習如何預測不確定事件(隨機事件)發生的可能性的大小!庇酶怕暑A測隨機發生的可能性大小,在日常生活、自然、科技領域有著廣泛的應用,學習本單元知識,無論是今后繼續深造(高中學習概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學生較難理解。

          在教材的處理上,采取小單元教學,本節課安排讓學生了解求隨機事件概率的兩種方法,目的是讓學生能夠比較系統地理解概率的意義及求概率的方法,為下面學習求比較復雜的情況的概率打下基礎。

          2、重點與難點。

          重點:對概率意義的理解,通過多次重復實驗,用頻率預測概率的方法,以及用列舉法求概率的方法。

          難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發生的總數及總的結果數的分析。

          二、目的分析:

          知識與技能:掌握用頻率預測概率和用列舉法求概率方法。

          過程與方法:組織學生自主探究,合作交流,引導學生觀察試驗和統計的結果,進而進行分析、歸納、總結,了解并感受概率的定義的過程,引導學生從數學的視角觀察客觀世界,用數學的思維思考客觀世界,以數學的語言描述客觀世界。

          情感態度價值觀:學生經歷觀察、分析、歸納、確認等數學活動,感受數學活動充滿了探索性與創造性,感受量變與質變的對立統一規律,同時為概率的精準、新穎、獨特的思維方法所震撼,激發學生學習數學的熱情,增強對數學價值觀的認識。

          三、教法、學法分析:

          引導學生自主探究、合作交流、觀察分析、歸納總結,讓學生經歷知識(概率定義計算公式)的產生和發展過程,讓學生在數學活動中學習數學、掌握數學,并能應用數學解決現實生活中的實際問題,教師是學生學習的組織者、合作者和指導者,精心設計教學情境,有序組織學生活動,讓課堂充滿生機活力,體現“教” 為“學”服務這一宗旨。

          四、教學過程分析:

          1、引導學生探究

          精心設計問題一,學生通過對問題一的探究,一方面復習前面學過的“確定事件和不確定事件”的知識,為學好本節內容理清知識障礙,二是讓學生明確為什么要學習概率(如何預測隨機事件可能性發生大小)。引導學生對問題二的探究與觀察實驗數據,使學生了解概率這一重要概念的實際背景,感受并相信隨機事件的發生中存在著統計規律性,感受數學規律的真實的發現過程。

          2、歸納概括

          學生從試驗中得到的統計數字及概率呈現穩定在某一數值附近這一規律,讓學生明確概率定義的由來。

          引導學生重新對問題一和問題二的探究,分析某事件發生的各種可能性在全部可能發生結果中所占比例,得到用列舉法求概率的公式,引導學生進行理性思維,邏輯分析,既培養學生的分析問題能力,又讓學生明確用列舉法求概率這一簡便快捷方法的合理性。

          P(A)= = = (m

          3、舉例應用

         、乓龑W生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學生掌握用列舉法求概率的方法。

         、埔龑W生對練習中的問題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。

          深化發展

         、旁O置3個小題目,引導學生歸納、分析、總結,加深對知識與方法的理解,并學會靈活運用。

         、谱寣W生設計活動內容,對知識進行升華和拓展,引導學生創造性地運用知識思考問題和解決問題,從而培養學生的創新意識和創新能力。

        【實用的高中數學說課稿匯編七篇】相關文章:

        實用的高中數學說課稿模板匯編七篇08-18

        實用的高中數學說課稿范文匯編七篇08-20

        實用的高中數學說課稿模板七篇08-10

        實用的高中數學說課稿匯編六篇07-29

        實用的高中數學說課稿匯編9篇07-25

        實用的高中數學說課稿模板合集七篇08-18

        實用的高中數學說課稿范文合集七篇08-15

        實用的高中數學說課稿模板匯編7篇08-09

        實用的高中數學說課稿模板匯編6篇08-03

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>