1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中函數概念說課稿

        時間:2021-04-02 14:50:20 高中說課稿 我要投稿

        高中函數概念說課稿范文

          作為一無名無私奉獻的教育工作者,通常會被要求編寫說課稿,說課稿可以幫助我們提高教學效果。優秀的說課稿都具備一些什么特點呢?以下是小編幫大家整理的高中函數概念說課稿范文,僅供參考,歡迎大家閱讀。

        高中函數概念說課稿范文

          高中函數概念說課稿1

          一、本課時在教材中的地位及作用

          教材采用北師大版(數學)必修1,函數作為初等數學的核心內容,貫穿于整個初等數學體系之中。本章節9個課時,函數這一章在高中數學中,起著承上啟下的作用,它是對初中函數概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數上,把函數看成變量之間的依賴關系,而高中階段不僅把函數看成變量之間的依賴關系,更是從“變量說”到“對應說”,這是對函數本質特征的進一步認識,也是學生認識上的一次飛躍。這一章內容滲透了函數的思想,集合的思想以及數學建模的思想等內容,這些內容的學習,無疑對學生今后的學習起著深刻的影響。

          本節課《函數的概念》是函數這一章的起始課。概念是數學的基礎,只有對概念做到深刻理解,才能正確靈活地加以應用。本課從集合間的對應來描繪函數概念,起到了上承集合,下引函數的作用。也為進一步學習函數這一章的其它內容提供了方法和依據。

          二、教學目標

          理解函數的概念,會用函數的定義判斷函數,會求一些最基本的函數的定義域、值域。

          通過對實際問題分析、抽象與概括,培養學生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。

          通過對函數概念形成的探究過程,培養學生發現問題,探索問題,不斷超越的創新品質。

          三、重難點分析確定

          根據上述對教材的分析及新課程標準的要求,確定函數的概念既是本節課的重點,也應該是本章的難點。

          四、教學基本思路及過程

          本節課《函數的概念》是函數這一章的起始課。概念是數學的基礎,只有對概念做到深刻理解,才能正確靈活地加以應用。本課(借助小黑板)從集合間的對應來描繪函數概念,起到了上承集合,下引函數的作用,也為進一步學習函數這一章的其它內容提供了方法和依據。

         、艑W情分析

          一方面學生在初中已經學習了變量觀點下的函數定義,并具體研究了幾類最簡單的函數,對函數已經有了一定的感性認識;另一方面在本書第一章學生已經學習了集合的概念,這為學習函數的現代定義打下了基礎。

          函數在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應來描繪函數概念,是一個抽象過程,要求學生的抽象、分析、概括的能力比較高,學生學起來有一定的難度,加上學生數學基礎較差,理解能力,運算能力等參差不齊等。

         、平谭āW法

          1、本節課采用的方法有:

          直觀教學法、啟發教學法、課堂討論法。

          2、采用這些方法的理論依據:我一方面精心設計問題情景,引導學生主動探索,另一方面,依據本節為概念學習的特點,以問題的提出、問題的解決為主線,設置問題,倡導學生主動參與,通過不斷探究、發現,在師生互動、生生互動中,讓學習過程成為學生心靈愉悅的主動認知過程,充分體現“教師為主導,學生為主體”的教學原則。

          3、學法方面,學生通過對新舊兩種函數定義的對比,在集合論的觀點下初步建構出函數的概念。在理解函數概念的基礎上,建構出函數的定義域、值域的概念,并初步掌握它們的求法。

         、墙虒W過程

         。ㄒ唬﹦撛O情景,引入新課

          情景1:提供一張表格,把本班中考得分前10名的情況填入表格,我報名次,學生提供分數。

          情景2:西康高速汽車的行駛速度為80千米/小時,汽車行駛的距離y與行駛時間x之間的關系式為:y=80x

          情景3:安康市一天24小時內的氣溫隨時間變化圖:(圖略)

          提問(1):這三個例子中都涉及到了幾個變化的量?(兩個)

          提問(2):當其中一個變量取值確定后,另一個變量將如何?(它的值也隨之唯一確定)

          提問(3):這樣的關系在初中稱之為什么?(函數)引出課題

          [設計意圖]在創設本課開頭情境1、2的時候,我并沒有運用書中的前兩個例子。第一個例子我改成提供給學生一張中考成績統計單。是為了創設和學生生活相近的情境,從而引起學生的興趣,調節課堂氣氛,引人入勝,第二個例子我改成一道簡單的速度與時間問題,是因為學生對重力加速度的問題還不是很熟悉。同時這兩個例子并沒有改變課本用三個實例分別代表三種表示函數方法的意圖。

          這樣學生可以從熟悉的情景引入,提高學生的參與程度。符合學生的認知特點。

         。ǘ┨剿餍轮纬筛拍

          1、引導分析,探求特征

          思考:如何用集合的語言來闡述上述三個問題的共同特征?

          [設計意圖]并不急著讓學生回答此問,為引導學生改變思路,換個角度思考問題,進入本節課的重點。這里也是教師作為教學的引導者的體現,及時對學生進行指引。

          提問(4):觀察上述三問題,它們分別涉及到了哪些集合?(每個問題都涉及到了兩個集合,具體略)

          [設計意圖]引導學生觀察,培養觀察問題,分析問題的能力。

          提問(5):兩個集合的元素之間具有怎樣的關系?(對應)

          及時給出單值對應的定義,并嘗試用輸入值,輸出值的概念來表達這種對應。

          2、抽象歸納,引出概念

          提問(6):現在你能從集合角度說說這三個問題的共同點嗎?

          [設計意圖]學生相互討論,并回答,引出函數的概念。訓練學生的歸納能力。

          板書:函數的概念

          上述一系列問題,始終倡導學生主動參與,通過不斷探究、發現,在師生互動,生生互動中,在學生心情愉悅的氛圍中,突破本節課的重點。

          3、探求定義,提出注意

          提問(7):你覺得這個定義中應注意哪些問題(兩個非空數集,唯一對應等)?

          [設計意圖]剖析概念,使學生抓住概念的本質,便于理解記憶。

          2、例題剖析,強化概念

          例1、判斷下列對應是否為函數:

          (1)

         。2)

          [設計意圖]通過例1的教學,使學生體會單值對應關系在刻畫函數概念中的核心作用。

          例2、(1);

         。2)y=x—1;

         。3);

         。4)

          [設計意圖]首先對求函數的定義域進行方法引導,偶次方根必需注意的地方,其次,通過(2)(3)兩道題,強調只有對應法則與定義域相同的兩個函數,才是相同的函數。而與函數用什么字母表示無關,進一步理解函數符號的本質內涵。

          例3、試求下列函數的定義域與值域:

         。1)

         。2)

          [設計意圖]讓學體會理解函數的三要素:定義域、值域、對應法則。

          4、鞏固練習,運用概念

          書本練習P25:練習1,2,3。P28:練習1,2

          布置作業:A組:1、2。B組1。

          5、課堂小結,提升思想

          引導學生進行回顧,使學生對本節課有一個整體把握,將對學生形成的知識系統產生積極的影響。

          6、板書設計:借助小黑板,時間的合理分配等(略)

          五、教學評價及反思

          我通過對一系列問題情景的設計,讓學生在問題解決的過程中體驗成功的樂趣,實現對本課重難點的突破,教學時間分配合理,為使課堂形式更加豐富,也可將某些問題改成判斷題。在學生分析、歸納、建構概念的過程中,可能會出現理解的偏差,教師應給予恰當的梳理。

          本節課的起始,可以借助于多媒體技術,為學生創設更理想的教學情景(結合各學校的硬件條件)。

          高中函數概念說課稿2

          一、說課內容:

          蘇教版九年級數學下冊第六章第一節的二次函數的概念及相關習題

          二、教材分析:

          1、教材的地位和作用

          這節課是在學生已經學習了一次函數、正比例函數、反比例函數的基礎上,來學習二次函數的概念。二次函數是初中階段研究的最后一個具體的函數,也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數和以前學過的一元二次方程、一元二次不等式有著密切的聯系。進一步學習二次函數將為它們的解法提供新的方法和途徑,并使學生更為深刻的理解“數形結合”的重要思想。而本節課的二次函數的概念是學習二次函數的基礎,是為后來學習二次函數的圖象做鋪墊。所以這節課在整個教材中具有承上啟下的重要作用。

          2、教學目標和要求:

         。1)知識與技能:使學生理解二次函數的概念,掌握根據實際問題列出二次函數關系式的方法,并了解如何根據實際問題確定自變量的取值范圍。

         。2)過程與方法:復習舊知,通過實際問題的引入,經歷二次函數概念的探索過程,提高學生解決問題的`能力。

          (3)情感、態度與價值觀:通過觀察、操作、交流歸納等數學活動加深對二次函數概念的理解,發展學生的數學思維,增強學好數學的愿望與信心。

          3、教學重點:對二次函數概念的理解。

          4、教學難點:由實際問題確定函數解析式和確定自變量的取值范圍。

          三、教法學法設計:

          1、從創設情境入手,通過知識再現,孕伏教學過程

          2、從學生活動出發,通過以舊引新,順勢教學過程

          3、利用探索、研究手段,通過思維深入,領悟教學過程

          四、教學過程:

          (一)復習提問

          1.什么叫函數?我們之前學過了那些函數?

         。ㄒ淮魏瘮担壤瘮,反比例函數)

          2.它們的形式是怎樣的?

         。=x+b,≠0;=x,≠0;= , ≠0)

          3.一次函數(=x+b)的自變量是什么?函數是什么?常量是什么?為什么要有≠0的條件?值對函數性質有什么影響?

          【設計意圖】復習這些問題是為了幫助學生弄清自變量、函數、常量等概念,加深對函數定義的理解.強調≠0的條件,以備與二次函數中的a進行比較.

          (二)引入新課

          函數是研究兩個變量在某變化過程中的相互關系,我們已學過正比例函數,反比例函數和一次函數?聪旅嫒齻例子中兩個變量之間存在怎樣的關系。(電腦演示)

          例1、(1)圓的半徑是r(c)時,面積s (c)與半徑之間的關系是什么?

          解:s=πr(r>0)

          例2、用周長為20的籬笆圍成矩形場地,場地面積()與矩形一邊長x()之間的關系是什么?

          解: =x(20/2—x)=x(10—x)=—x+10x (0<x<10)< p="">

          例3、設人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉存。如果存款額是100元,那么請問兩年后的本息和(元)與x之間的關系是什么(不考慮利息稅)?

          解: =100(1+x)

          =100(x+2x+1)

          = 100x+200x+100(0<x<1)< p="">

          教師提問:以上三個例子所列出的函數與一次函數有何相同點與不同點?

          【設計意圖】通過具體事例,讓學生列出關系式,啟發學生觀察,思考,歸納出二次函數與一次函數的聯系:

         。1)函數解析式均為整式(這表明這種函數與一次函數有共同的特征)。

         。2)自變量的最高次數是2(這與一次函數不同)。

          (三)講解新課

          以上函數不同于我們所學過的一次函數,正比例函數,反比例函數,我們就把這種函數稱為二次函數。

          二次函數的定義:形如=ax2+bx+c (a≠0,a, b, c為常數) 的函數叫做二次函數。

          鞏固對二次函數概念的理解:

          1、強調“形如”,即由形來定義函數名稱。二次函數即 是關于x的二次多項式(關于的x代數式一定要是整式)。

          2、在 =ax2+bx+c 中自變量是x ,它的取值范圍是一切實數。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r>0)

          3、為什么二次函數定義中要求a≠0 ?

         。ㄈ鬭=0,ax2+bx+c就不是關于x的二次多項式了)

          4、在例3中,二次函數=100x2+200x+100中, a=100, b=200, c=100。

          5、b和c是否可以為零?

          由例1可知,b和c均可為零。

          若b=0,則=ax2+c;

          若c=0,則=ax2+bx;

          若b=c=0,則=ax2。

          注明:以上三種形式都是二次函數的特殊形式,而=ax2+bx+c是二次函數的一般形式。

          【設計意圖】這里強調對二次函數概念的理解,有助于學生更好地理解,掌握其特征,為接下來的判斷二次函數做好鋪墊。

          判斷:下列函數中哪些是二次函數?哪些不是二次函數?若是二次函數,指出a、b、c。

          (1)=3(x—1)+1 (2)

         。3)s=3—2t (4)=(x+3)— x

         。5) s=10πr (6) =2+2x

         。8)=x4+2x2+1(可指出是關于x2的二次函數)

          【設計意圖】理論學習完二次函數的概念后,讓學生在實踐中感悟什么樣的函數是二次函數,將理論知識應用到實踐操作中。

         。ㄋ模╈柟叹毩

          1、已知一個直角三角形的兩條直角邊長的和是10c。

          (1)當它的一條直角邊的長為4、5c時,求這個直角三角形的面積;

         。2)設這個直角三角形的面積為Sc2,其中一條直角邊為xc,求S關于x的函數關系式。

          【設計意圖】此題由具體數據逐步過渡到用字母表示關系式,讓學生經歷由具體到抽象的過程,從而降低學生學習的難度。

          2、已知正方體的棱長為xc,它的表面積為Sc2,體積為Vc3。

         。1)分別寫出S與x,V與x之間的函數關系式子;

         。2)這兩個函數中,那個是x的二次函數?

          【設計意圖】簡單的實際問題,學生會很容易列出函數關系式,也很容易分辨出哪個是二次函數。通過簡單題目的練習,讓學生體驗到成功的歡愉,激發他們學習數學的興趣,建立學好數學的信心。

          3、設圓柱的高為h(c)是常量,底面半徑為rc,底面周長為Cc,圓柱的體積為Vc3

         。1)分別寫出C關于r;V關于r的函數關系式;

         。2)兩個函數中,都是二次函數嗎?

          【設計意圖】此題要求學生熟記圓柱體積和底面周長公式,在這兒相當于做了一次復習,并與今天所學知識聯系起來。

          4、籬笆墻長30,靠墻圍成一個矩形花壇,寫出花壇面積(2)與長x之間的函數關系式,并指出自變量的取值范圍.

          【設計意圖】此題較前面幾題稍微復雜些,旨在讓學生能夠開動腦筋,積極思考,讓學生能夠“跳一跳,夠得到”。

         。ㄎ澹┩卣寡由

          1、已知二次函數=ax2+bx+c,當 x=0時,=0;x=1時,=2;x= —1時,=1.求a、b、c,并寫出函數解析式.

          【設計意圖】在此稍微滲透簡單的用待定系數法求二次函數解析式的問題,為下節課的教學做個鋪墊。

          2、確定下列函數中的值

         。1)如果函數= x^2—3+2 +x+1是二次函數,則的值一定是______

         。2)如果函數=(—3)x^2—3+2+x+1是二次函數,則的值一定是______

          【設計意圖】此題著重復習二次函數的特征:自變量的最高次數為2次,且二次項系數不為0、

          (六)小結思考:

          本節課你有哪些收獲?還有什么不清楚的地方?

          【設計意圖】讓學生來談本節課的收獲,培養學生自我檢查、自我小結的良好習慣,將知識進行整理并系統化。而且由此可了解到學生還有哪些不清楚的地方,以便在今后的教學中補充。

         。ㄆ撸┳鳂I布置:

          必做題:

          1、正方形的邊長為4,如果邊長增加x,則面積增加,求關于x 的函數關系式。這個函數是二次函數嗎?

          2、在長20c,寬15c的矩形木板的四角上各鋸掉一個邊長為xc的正方形,寫出余下木板的面積(c2)與正方形邊長x(c)之間的函數關系,并注明自變量的取值范圍。

          選做題:

          1、已知函數 是二次函數,求的值。

          2、試在平面直角坐標系畫出二次函數=x2和=—x2圖象

          【設計意圖】作業中分為必做題與選做題,實施分層教學,體現新課標人人學有價值的數學,不同的人得到不同的發展。另外補充第4題,旨在激發學生繼續學習二次函數圖象的興趣。

          五、教學設計思考

          以實現教學目標為前提

          以現代教育理論為依據

          以現代信息技術為手段

          貫穿一個原則——以學生為主體的原則

          突出一個特色——充分鼓勵表揚的特色

          滲透一個意識——應用數學的意識

          高中函數概念說課稿3

          尊敬的各位考官大家好,我是今天的X號考生,今天我說課的題目是《函數的概念》。

          新課標指出:數學課程要面向全體學生,適應學生個性發展的需要,使得人人都能獲得良好的數學教育,不同的人在數學上都能得到不同的發展。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課。

          一、說教材

          首先談談我對教材的理解,《函數的概念》是北師大版必修一第二章2、1的內容,本節課的內容是函數概念。函數內容是高中數學學習的一條主線,它貫穿整個高中數學學習中。又是溝通代數、方程、、不等式、數列、三角函數、解析幾何、導數等內容的橋梁,同時也是今后進一步學習高等數學的基礎。函數學習過程經歷了直觀感知、觀察分析、歸納類比、抽象概括等思維過程,通過學習可以提高了學生的數學思維能力。

          二、說學情

          接下來談談學生的實際情況。新課標指出學生是教學的主體,所以要成為符合新課標要求的教師,深入了解所面對的學生可以說是必修課。本階段的學生已經具備了一定的分析能力,以及邏輯推理能力。所以,學生對本節課的學習是相對比較容易的。

          三、說教學目標

          根據以上對教材的分析以及對學情的把握,我制定了如下三維教學目標:

          (一)知識與技能

          理解函數的概念,能對具體函數指出定義域、對應法則、值域,能夠正確使用“區間”符號表示某些函數的定義域、值域。

         。ǘ┻^程與方法

          通過實例,進一步體會函數是描述變量之間的依賴關系的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用進一步加深集合與對應數學思想方法。

         。ㄈ┣楦袘B度價值觀

          在自主探索中感受到成功的喜悅,激發學習數學的興趣。

          四、說教學重難點

          我認為一節好的數學課,從教學內容上說一定要突出重點、突破難點。而教學重點的確立與我本節課的內容肯定是密不可分的。那么根據授課內容可以確定本節課的教學重點是:函數的模型化思想,函數的三要素。本節課的教學難點是:符號“y=f(x)”的含義,函數定義域、值域的區間表示,從具體實例中抽象出函數概念。

          五、說教法和學法

          現代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調學生的主動性、積極性為出發點。根據這一教學理念,結合本節課的內容特點和學生的心理特征與認知規律以問題為主線,我采用啟發法、講授法、小組合作、自主探究等教學方法。

          六、說教學過程

          下面我將重點談談我對教學過程的設計。

         。ㄒ唬┬抡n導入

          首先是導入環節,提問:關于函數你知道什么?在初中階段對函數是如何下定義的?你能否舉一個例子。從而引出本節課的課題《函數概念》。

          利用初中的函數概念進行導入,拉近學生與新知識之間的距離,幫助學生進一步完善知識框架行程知識體系。

         。ǘ┬轮剿

          接下來是教學中最重要的新知探索環節,我主要采用講解法、小組合作、自主探究法等。

          首先利用多媒體展示生活實例

         。1)某山的海拔高度與氣溫的變化關系;

          (2)汽車勻速行駛,路程和時間的變化關系;

         。3)沸點和氣壓的變化關系。

          引導學生分析歸納以上三個實例,他們之間有什么共同點,并根據初中所學函數的概念,判斷各個實例中的兩個變量之間的關系是否為函數關系。

          預設:

          ①都有兩個非空數集A、B;

         、趦蓚數集之間都有一種確定的對應關系;

         、蹖τ跀导疉中的每一個x,按照某種對應關系f,在數集B中都有唯一確定的y值和它對應。

          接下來引導學生思考通過對上述實例的共同點并結合課本歸納函數的概念。組織學生閱讀課本,在閱讀過程中注意思考以下問題

          問題1:函數的概念是什么?初中與高中對函數概念的定義的異同點是什么?符號“x”的含義是什么?

          問題2:構成函數的三要素是什么?

          問題3:區間的概念是什么?區間與集合的關系是什么?在數軸上如何表示區間?

          十分鐘過后,組織學生進行全班交流。

          預設:函數的概念:給定兩個非空數集A和B,如果按照某個對應關系f,對于集合A中任何一個數x,在集合B中都存在唯一確定的數f(x)與之對應,那么就把這對應關系f叫作定義在幾何A上的函數,記作f:A→B,或y=f(x),x∈A。此時,x叫做自變量,集合A叫做函數的定義域,集合{f(x)▏x∈A}叫作函數的值域。

          函數的三要素包括:定義域、值域、對應法則。

          區間:

          為了使得學生對函數概念的本質了解的更加深入此時進行追問

          追問1:初中的函數概念與高中的函數概念有什么異同點?

          講解過程中注意強調,函數的本質為兩個數集之間都有一種確定的對應關系,而且是一對一,或者多對一,不能一對多。

          追問2:符號“y=f(x)”的含義是什么?“y=g(x)”可以表示函數嗎?

          講解過程中注意強調,符號“y=f(x)”是函數符號,可以用任意的字母表示,f(x)表示與x對應的函數值,一個數不是f與x相乘。

          追問3:對應關系f可以是什么形式?

          講解過程中注意強調,對應關系f可以是解析式、圖象、表格

          追問4:函數的三要素可以缺失嗎?指出三個實例中的三要素分別是什么。

          講解過程中注意強調,函數的三要素缺一不可。

          追問5:用區間表示三個實例的定義域和值域。

          設計意圖:在這個過程當中我將課堂完全交給學生,教師發揮組織者,引導者的作用,在運用啟發性的原則,學生能夠獨立思考問題,動手操作,還能在這個過程中和同學之間討論,加強了學生們之間的交流,這樣有利于培養學生們的合作意識和探究能力。

         。ㄈ┱n堂練習

          接下來是鞏固提高環節。

          組織學生自己列舉幾個生活中有關函數的例子,并用定義加以描述,指出函數的定義域和值域并用區間表示。

          這樣的問題的設置,讓學生對知識進一步鞏固,讓學生逐漸熟練掌握。

         。ㄋ模┬〗Y作業

          在課程的最后我會提問:今天有什么收獲?

          引導學生回顧:函數的概念、函數的三要素、區間的表示。

          本節課的課后作業我設計為:

          1、求解下列函數的值

         。1)已知f(x)=5x—3,求發(x)=4。

         。2)已知

          求g(2)。

          2、如圖,某灌溉渠道的橫截面是等腰梯形,底寬2m,渠深1.8m,邊坡的傾角是45°

         。1)試用解析表達式將橫截面中水的面積A表示成水深h的函數

          (2)確定函數的定義域和值域

         。3)嘗試繪制函數的圖象

          這樣的設計能讓學生理解本節課的核心,并為下節課學習函數的表示方法做鋪墊。

          高中函數概念說課稿4

        各位專家、各位老師:

          大家好!

          今天我說課的題目是《函數的概念》,本課題是人教A版必修1中1、2的內容,計劃安排兩個課時,本課時的內容為:函數的概念、三要素及簡單函數的定義域及值域的求法。下面我將以“學什么、怎么學、學了有何用”為思路,從教材、教法、學法、教學評價、教學過程設計、板書設計等幾個方面對本節課的教學加以說明。

          一、教學目標

          1、課程標準

          課節內容的課標要求是:

         。1)通過豐富實例,進一步體會函數是描述變量之間的依賴關系的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;了解構成函數的要素,會求一些簡單函數的定義域和值域;了解映射的概念。

         。2)在實際情景中,會根據不同的需要選擇恰當的方法(如圖像法、列表法、解析法)表示函數。

         。3)通過具體實例,了解簡單的分段函數,并能簡單應用。

         。4)通過已學過的函數特別是二次函數,理解函數的單調性、最大(。┲导捌鋷缀我饬x;結合具體函數,了解奇偶性的含義。

         。5)學會運用函數圖像理解和研究函數的性質。

          2、課標解讀

          關于函數內容的整體定位和基本要求解讀:

         。1)把函數作為刻畫現實世界中一類重要變化規律的模型來學習,是一種通過某一事物的變化信息可推知另一事物信息的對應關系的數學模型;

         。2)強調對函數本質的認識和理解,因此要求在高中數學學習中多次接觸、螺旋上升;

         。3)關注背景、應用、增加了函數模型及其應用;

         。4)削弱和淡化了一些內容,如函數的定義域、值域、反函數、復合函數等;

         。5)注重思想和聯系——增加了函數與方程、用二分法求方程的近似根;

          (6)合理地使用信息技術,旨在幫助學生更好地認識和理解函數及其性質。

          【依據意圖】

          (1)教材如此要求的根本目的是希望幫助學生更好地從整體上認識和理解函數的本質,而真正理解函數概念是不容易的。因此,不要在過于細枝末節的非本質問題上作過多的訓練,有了定義域和對應關系,值域自然就定了。此外,“課標”建議先講函數再講映射,也是為了幫助學生把注意力集中在函數的本質理解。

         。2)希望通過方程根與函數零點的內在聯系,加強對函數概念、函數思想及函數這一主線在高中數學中的地位作用的認識和理解。并通過用二分法求方程近似根將函數思想以及方程的根與函數零點之間的聯系具體化。

         。3)二分法是求方程近似根的常用方法,更為一般、簡單,能很好地體現函數思想,“大綱”只是用“三個二”解決根的分布問題。

         。4)現代信息技術不能替代艱苦的學習和人腦精密的思考,信息技術只是作為達到目的的一種手段,一種快速計算的工具。

          3、教材分析

         。1)地位作用

          函數內容是高中數學學習的一條主線,它貫穿整個高中數學學習中,其重要性體現在以下幾個方面:

          1、函數是高中數學七大主干知識之一,又是溝通代數﹑方程﹑不等式﹑數列、三角函數、解析幾何、導數等內容的橋梁,同時也是今后進一步學習高等數學的基礎;

          2、函數的學習過程經歷了直觀感知、觀察分析、歸納類比、抽象概括等思維過程,通過學習可以提高了學生的數學思維能力;

          3、這一節所學習的函數概念既是對初中所學函數概念的一次升華和再認識、對集合語言的一次重要應用;又是以后繼續學習函數的性質、數列等等知識的必備理論基礎,在函數學習中是承上啟下的關鍵章節。

         。2)內容與課時劃分

          本課題是高中數學人教A版必修1中1、2節,計劃教學2個課時,第一課時內容包括函數的概念、函數的三要素、簡單函數的定義域及值域的求法;第二課時內容為:區間表示、較復雜函數的定義域及值域的求法、分段函數、函數圖象等。本節《函數的概念》是函數這一章的起始課。概念是數學的基礎,只有對概念做到深刻理解,才能正確靈活地加以應用。

          4、學情分析

         。1)學生在初中已經在初中學習過函數的概念。

         。2)本班級學生個體差異較明顯。

          5、教學目標

          【依據意圖】:教學目標的設計,要簡潔明了,具有較強的可操作性,容易檢測目標的達成度,同時也要體現出新課標下對素質教育的要求。基于以上分析作為依據,課時目標分解如下:

          【課時分解目標】

          1、能夠列舉生活中具有函數關系的實例;

          2、能用集合與對應的語言描述函數的定義,能對具體函數指出定義域、對應法則、值域;

          3、會求一些簡單函數(帶根號,分式)的定義域和值域;

          4、能夠從函數的三要素的角度去判定兩個函數是否是同一個函數。

          二、教學重難點

          重點:讓學生體會函數是描述變量之間的相互依賴關系的重要數學模型,正確理解形成函數的概念。

          難點:引導學生從具體實例抽象出函數概念。

          [意圖依據]:本課時是概念課,重在概念的理解和形成,但教師應把重點放在讓學生形成概念的過程中,聯系舊知、突破難點、生長新知。為此通過教學目標和難重點的展示,讓學生明確本節課的任務及精髓,帶著目標去學習,才能達到事半功倍的效果。

          三、教法

          問題式教學法(實例情境、啟發引導、合作交流、歸納抽象)

          由于本課題是從集合與對應的角度揭示函數的本質,無論難度還是跨度都有質的飛躍。根據學生的心理特征和認知規律,我通過以問題為主線,以學生為主體,以教師為主導的教學理念。采用一系列的設問、引導、啟發、發現,讓學生歸納、概括出函數概念的本質,并靈活應用多媒體、黑板呈現、展示、交流。

          [意圖依據]:函數的`概念的教學要注重以下幾個方面:

         。1)把集合作為一種語言;

         。2)對函數本質的理解不能一步到位,要注重螺旋上升;

         。3)重視信息技術的使用。為此,教師要在課堂上搭建一個平臺,通過展示實例、學生舉例、典例分析、小結歸納等環節穿插若干問題,引起思考,達成教學目標。

          四、學法

          自主探究、合作交流、展示互評

          我們知道越是基礎性的概念,其統攝性就越強,學生從中領悟到的數學就越本質;但事物總有兩面性,這些概念的理解和掌握往往難度大、時間長,需要更多的經驗積累.因此本節課在學法上我重視學生在列舉大量實際背景的前提下對所給出實例觀察,類比,歸納,分析,探究,合作,提煉,感悟函數概念的“本來面目”,以此培養學生發現問題、研究問題和分析解決問題的能力;同時在預習環節有學生的自主學習、在互動環節有學生的合作交流、在課后拓展環節有學生的探究學習。這樣做,增加了學生主動參與的機會,增強了參與意識,教給學生獲取知識的途徑以及思考問題的方法,使學生真正成為教學的主體。也只有這樣做,才能使學生“學”有所“思”,“思”有所“獲”,“獲”有所“用”。也恰好能夠體現我以“學什么、怎么學、學了有何用”來設計本課題的整體思路。

          [意圖依據]:本課時是以問題為主線的教學過程,著重讓學生經過對大量實例的剖析、了解、歸納而形成概念。在這個過程中,教師的作用是引導,經過一系列問題的提出、解決讓學生在思考、交流的基礎上層層深入的理解函數概念。

          五、教學過程設計

          本節內容的教學過程我設計為以下逐層推進六個步驟:

          1、課前預習、生成問題

          2、創境設問、引入課題

          3、觀察分析、探索新知

          4、思考辨析、深刻理解

          5、提煉總結、分享收獲

          6、布置作業、拓展延伸

        【高中函數概念說課稿范文】相關文章:

        高中數學《棱錐的概念和性質》說課稿范文01-28

        課改下函數概念教育研討論文10-07

        人教版高中數學《函數的最大值和最小值》說課稿范文01-30

        初中數學說課稿:反比例函數12-10

        高中《經濟生活》說課稿范文12-23

        高中美術優秀說課稿范文07-01

        【精華】高中說課稿范文五篇06-11

        高中語文說課稿范文:《勸學》11-26

        有關高中說課稿范文合集四篇07-06

        【精華】高中說課稿范文合集6篇07-05

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>