【必備】高中數學說課稿4篇
作為一名老師,就難以避免地要準備說課稿,說課稿有助于提高教師的語言表達能力?靵韰⒖颊f課稿是怎么寫的吧!以下是小編幫大家整理的高中數學說課稿4篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
高中數學說課稿 篇1
尊敬的各位專家、評委:
上午好!
今天我說課的課題是人教A版必修1第二章第二節《對數函數》。
我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
一、教材分析
地位和作用
本章學習是在學生完成函數的第一階段學習(初中)的基礎上,進行第二階段的函數學習。而對數函數作為這一階段的重要的基本初等函數之一,它是在學生已經學習了指數函數及對數的內容,這為過渡到本節的學習起著鋪墊作用!皩岛瘮怠边@節教材,是在沒有學習反函數的基礎上研究的指數函數和對數函數的自變量和因變量之間的關系。同時對數函數作為常用數學模型在解決社會生活中的實例有著廣泛的應用,本節課的學習為學生進一步學習,參加生產和實際生活提供必要的基礎知識。
二、目標分析
(一)、教學目標
根據《對數函數》在教材內容中的地位與作用,結合學情分析,本節課教學應實現如下的教學目標:
1、知識與技能
。1)、進一步體會函數是描述變量之間的依賴關系的重要數學模型;
。2)、理解對數函數的概念、掌握對數函數的圖像和性質;
(3)、由實際問題出發,培養學生探索知識和抽象概括知識等方面的能力。
2、過程與方法
引導學生觀察,探尋變量和變量的對應關系,通過歸納、抽象、概括,自主建構對數函數的概念;體驗結合舊知識探索新知識,研究新問題的快樂。
3、情感態度與價值觀
通過對對數函數函數圖像和性質的探究過程,培養學生發現問題,探索問題,不斷超越的創新品質。在民主、和諧的教學氣氛中,促進師生的情感交流。
。ǘ┙虒W重點、難點及關鍵
1、重點:對數函數的概念、圖像和性質;在教學中只有突出這個重點,才能使教材脈絡分明,才能有利于學生聯系舊知識,學習新知識。
2、 難點:底數a對對數函數的圖像和性質的影響。
[關鍵]對數函數與指數函數的類比教學。
由指數函數的圖像過渡到對數函數的圖像,通過類比分析達到深刻地了解對數函數的圖像及其性質是掌握重點和突破難點的關鍵,在教學中一定要使學生的思考緊緊圍繞圖像,數形結合,加強直觀教學,使學生能形成以圖像為根本,以性質為主體的知識網絡,同時在立體的講解中,重視加強題組的設計和變形,使教學真正體現出由淺入深,由易到難,由具體到抽象的特點,從而突破重點、突破難點。
三、教法、學法分析
。ㄒ唬⒔谭
教學過程是教師和學生共同參與的過程,啟發學生自主性學習,充分調動學生的積極性、主動性;有效地滲透數學思想方法,提高學生素質。根據這樣的原則和所要完成的教學目標,并為激發學生的學習興趣,我采用如下的教學方法:
1、啟發引導學生思考、分析、實驗、探索、歸納;
2、采用“從特殊到一般”、“從具體到抽象”的方法;
3、體現“對比聯系”、“數形結合”及“分類討論”的思想方法;
4、投影儀演示法。
在整個過程中,應以學生看,學生想,學生議,學生練為主體,教師在學生仔細觀察、類比、想象的基礎上通過問題串的形式加以引導點撥,與指數函數性質對照,歸納,整理,只有這樣,才能喚起學生對原有知識的回憶,自覺地找到新舊知識的聯系,使新學知識更牢固,理解更深刻。
。ǘ、學法
教給學生方法比教給學生知識更重要,本節課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:
1、對照比較學習法:學習對數函數,處處與指數函數相對照;
2、探究式學習法:學生通過分析、探索,得出對數函數的定義;
3、自主性學習法:通過實驗畫出函數圖像、觀察圖像自得其性質;
4、反饋練習法:檢驗知識的應用情況,找出未掌握的內容及其差距。
四、教學過程分析
。ㄒ唬⒔虒W過程設計
1、創設情境,提出問題。
在某細胞分裂過程中,細胞個數y是分裂次數x的函數y=2x,因此,知道x的值(輸入值是分裂次數)就能求出y的值(輸出值為細胞的個數),這樣就建立了一個細胞個數和分裂次數x之間的函數關系式。
問題一:這是一個怎樣的函數模型類型呢?
設計意圖
復習指數函數
問題二:現在我們來研究相反的問題,如果知道了細胞的個數y,如何求分裂的次數x呢?這將會是我們研究的哪類問題?
設計意圖
為了引出對數函數
問題三:在關系式x=log2y每輸入一個細胞的個數y的值,是否一定都能得到唯一一個分裂次數x的值呢?
設計意圖
(1)、為了讓學生更好地理解函數;
。2)、為了讓學生更好地理解對數函數的概念。
2、引導探究,建構概念。
。1)、對數函數的概念:
同樣,在前面提到的發射性物質,經過的時間x年與物質剩余量y的關系式為y=0.84x,我們也可以把它改成對數式x=log0.84y,其中x年夜可以看作物質剩余量y的函數,可見這樣的問題在現實生活中還是不少的。
設計意圖
前面的問題情景的底數為2,而這個問題情景的底數是0.84,我認為這個情景并不是多余的,其實它暗示了對數函數的底數與指數函數的底數一樣有兩類。
但是在習慣上,我們用x表示自變量,用y表示函數值。
問題一:你能把以上兩個函數表示出來嗎?
問題二:你能得到此類函數的一般式嗎?
設計意圖
體現出了由特殊到一般的數學思想
問題三:在y=logax中,a有什么限制條件嗎?請結合指數式給以解釋。
問題四:你能根據指數函數的定義給出對數函數的定義嗎?
問題五:x=logay與y=ax中的x,y的相同之處是什么?不同之處是什么?
設計意圖
前四個問題是為了引導出對數函數的概念,然而,光有前四個問題還是不夠的,學生最容易忽略或最不容易理解的是函數的定義域,所以設計這個問題是為了讓學生更好地理解對數函數的定義域。
。2)、對數函數的圖像與性質
問題:有了研究指數函數的經歷,你覺得下面該學習什么內容了?
設計意圖
提示學生進行類比學習
合作探究1:借助計算器在同一直角坐標系中畫出下列兩組函數的圖像,并觀察各族函數圖像,探求他們之間的關系。
y=2x;y=log2x y=( )x,y=log x
合作探究2:當a>0,a≠ 1,函數y=ax與y=logax圖像之間有什么關系?
設計意圖
在這兒體現“從特殊到一般”、“從具體到抽象”的方法。
合作探究3:分析你所畫的兩組函數的圖像,對照指數函數的性質,總結歸納對數函數的性質。
設計意圖
學生討論并交流各自的而發現成果,教師結合學生的交流,適時歸納總結,并板書對數函數的性質)。問題1:對數函數y=logax( a>0,a≠1,)是否具有奇偶性,為什么?
問題2:對數函數y=logax( a>0,a≠1,),當a>1時,x取何值,y>0,x取何值,y<0,當0 問題3:對數式logab的值的符號與a,b的取值之間有何關系? 知識拓展:函數y=ax稱為y=logax的反函數,反之,也成立,一般地,如果函數y=f(x)存在反函數,那么它的反函數記作y=f-1(x)。 3、自我嘗試,初步應用。 例1:求下列函數的定義域 y=log0.2(4-x)(該題主要考查對函數y=logax的定義域(0,+∞)這一限制條件,根據函數的解析式求得不等式,解對應的不等式。) 例2:利用對數函數的性質,比較下列各組數中兩個數的大。 (1)、㏒2 3.4,log2 3.8; (2)、log0.5 1.8,log0.5 2.1; 。3)、log7 5,log6 7 。ㄔ谶@兒要求學生通過回顧指數函數的有關性質比較大小的步驟和方法,完成完成前兩題,最后一題可以通過教師的適當點撥完成解答,最后進行歸納總結比較數的大小常用的方法) 合作探究4:已知logm 4 設計意圖 該題不僅運用了對數函數的圖像和性質,還培養了學生數形結合、分類討論等數學思想。 4、當堂訓練,鞏固深化。 通過學生的主體性參與,使學生深刻體會到本節課的主要內容和思想方法,從而實現對知識的再次深化。 采用課后習題1,2,3. 5、小結歸納,回顧反思。 小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。 (1)、小結: ①對數函數的概念 、趯岛瘮档膱D像和性質 、劾脤岛瘮档男再|比較大小的一般方法和步驟, 。2)、反思 我設計了三個問題 、、通過本節課的學習,你學到了哪些知識? ②、通過本節課的學習,你最大的體驗是什么? 、、通過本節課的學習,你掌握了哪些技能? 。ǘ⒆鳂I設計 作業分為必做題和選做題,必做題是對本節課學生知識水平的反饋,選做題是對本節課內容的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生的自主發展、合作探究的學習氛圍的形成。 我設計了以下作業: 必做題:課后習題A 1,2,3; 選做題:課后習題B 1,2,3; (三)、板書設計 板書要基本體現課堂的內容和方法,體現課堂進程,能簡明扼要反映知識結構及其相互關系:能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。 五、評價分析 學生學習的結果評價固然重要,但是更重要的是學生學習的過程評價。我采用了及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對本節是否有一個完整的集訓,并進行及時的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。 謝謝! 一、教學背景分析 1、教材結構分析 《圓的方程》安排在高中數學第二冊(上)第七章第六節。圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用。圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用。 2、學情分析 圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的。但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難。另外學生在探究問題的能力,合作交流的意識等方面有待加強。 根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標: 3、教學目標 (1) 知識目標:①掌握圓的標準方程; 、跁蓤A的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程; 、劾脠A的標準方程解決簡單的實際問題。 (2) 能力目標:①進一步培養學生用代數方法研究幾何問題的能力; 、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用; 、墼鰪妼W生用數學的意識。 (3) 情感目標:①培養學生主動探究知識、合作交流的意識; 、谠隗w驗數學美的過程中激發學生的學習興趣。 根據以上對教材、教學目標及學情的'分析,我確定如下的教學重點和難點: 4、教學重點與難點 (1)重點:圓的標準方程的求法及其應用。 (2)難點: ①會根據不同的已知條件求圓的標準方程; 、谶x擇恰當的坐標系解決與圓有關的實際問題。 為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析: 二、教法學法分析 1、教法分析 為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上。另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程。 2、學法分析 通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應用圓的標準方程,熟悉用待定系數法求的過程。 下面我就對具體的教學過程和設計加以說明: 三、教學過程與設計 整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節: 創設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高 反饋訓練 形成方法 小結反思 拓展引申 下面我從縱橫兩方面敘述我的教學程序與設計意圖。 首先:縱向敘述教學過程 (一)創設情境——啟迪思維 問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2。7m,高為3m的貨車能不能駛入這個隧道? 通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決。一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題。用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。 通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節。 (二)深入探究——獲得新知 問題二 1、根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程? 2、如果圓心在,半徑為時又如何呢? 這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程。然后再讓學生對圓心不在原點的情況進行探究。我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法。 得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節。 (三)應用舉例——鞏固提高 I、直接應用 內化新知 問題三 1、寫出下列各圓的標準方程: (1)圓心在原點,半徑為3; (2)經過點,圓心在點。 2、寫出圓的圓心坐標和半徑。 我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備。 II、靈活應用 提升能力 問題四 1、求以點為圓心,并且和直線相切的圓的方程。 2、求過點,圓心在直線上且與軸相切的圓的方程。 3、已知圓的方程為,求過圓上一點的切線方程。 你能歸納出具有一般性的結論嗎? 已知圓的方程是,經過圓上一點的切線的方程是什么? 我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程。第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間。最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮。 III、實際應用 回歸自然 問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。 我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識。 (四)反饋訓練——形成方法 問題六 1、求過原點和點,且圓心在直線上的圓的標準方程。 2、求圓過點的切線方程。 3、求圓過點的切線方程。 接下來是第四環節——反饋訓練。這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果。 (五)小結反思——拓展引申 1、課堂小結 把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法 、賵A心為,半徑為r 的圓的標準方程為: 圓心在原點時,半徑為r 的圓的標準方程為:。 ②已知圓的方程是,經過圓上一點的切線的方程是:。 2、分層作業 (A)鞏固型作業:教材P81-82:(習題7。6)1,2,4。(B)思維拓展型作業:試推導過圓上一點的切線方程。 3、激發新疑 問題七 1、把圓的標準方程展開后是什么形式? 2、方程表示什么圖形? 在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了。在知識的拓展中再次掀起學生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。 以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計: 橫向闡述教學設計 (一)突出重點 抓住關鍵 突破難點 求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的同時突破了難點。 第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五。這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破。 (二)學生主體 教師主導 探究主線 本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終。從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的。另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務。 (三)培養思維 提升能力 激勵創新 為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力。在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行。 以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變。最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”。 各位老師: 大家好! 我叫***,來自**。我說課的題目是《古典概型》,內容選自于高中教材新課程人教A版必修3第三章第二節,課時安排為兩個課時,本節課內容為第一課時。下面我將從教材分析、教學目標分析、教法與學法分析、教學過程分析四大方面來闡述我對這節課的分析和設計: 一、教材分析 1.教材所處的地位和作用 古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。它承接著前面學過的隨機事件的概率及其性質,又是以后學習條件概率的基礎,起到承前啟后的作用。 2.教學的重點和難點 重點:理解古典概型及其概率計算公式。 難點:古典概型的判斷及把一些實際問題轉化成古典概型。 二、教學目標分析 1.知識與技能目標 。1)通過試驗理解基本事件的概念和特點 。2)在數學建模的過程中,抽離出古典概型的兩個基本特征,推導出古典概型下的概率的計算公式。 2、過程與方法: 經歷公式的推導過程,體驗由特殊到一般的數學思想方法。 3、情感態度與價值觀: 。1)用具有現實意義的實例,激發學生的學習興趣,培養學生勇于探索,善于發現的創新思想。 。2)讓學生掌握"理論來源于實踐,并把理論應用于實踐"的辨證思想。 三、教法與學法分析 1、教法分析:根據本節課的特點,采用引導發現和歸納概括相結合的教學方法,通過提出問題、思考問題、解決問題等教學過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發學生的學習興趣,調動學生的主體能動性,讓每一個學生充分地參與到學習活動中來。 2、學法分析:學生在教師創設的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結合,體現了學生的主體地位,培養了學生由具體到抽象,由特殊到一般的數學思維能力,形成了實事求是的科學態度。 、鍎撛O情景、引入新課 在課前,教師布置任務,以小組為單位,完成下面兩個模擬試驗: 試驗一:拋擲一枚質地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個數學小組至少完成20次(最好是整十數),最后由代表匯總; 試驗二:拋擲一枚質地均勻的骰子,分別記錄"1點"、"2點"、"3點"、"4點"、"5點"和"6點"的次數,要求每個數學小組至少完成60次(最好是整十數),最后由代表匯總。 在課上,學生展示模擬試驗的操作方法和試驗結果,并與同學交流活動感受,教師最后匯總方法、結果和感受,并提出兩個問題。 1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么? 不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結果是頻率,而不是概率。 2.根據以前的學習,上述兩個模擬試驗的每個結果之間都有什么特點?] 「設計意圖」通過課前的模擬實驗,讓學生感受與他人合作的重要性,培養學生運用數學語言的能力。隨著新問題的提出,激發了學生的求知欲望,通過觀察對比,培養了學生發現問題的能力。 ㈡思考交流、形成概念 學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關特點加以說明,加深對新概念的理解。 [基本事件有如下的兩個特點: 。1)任何兩個基本事件是互斥的; (2)任何事件(除不可能事件)都可以表示成基本事件的和.] 「設計意圖」讓學生從問題的相同點和不同點中找出研究對象的對立統一面,這能培養學生分析問題的能力,同時也教會學生運用對立統一的辯證唯物主義觀點來分析問題的一種方法。教師的注解可以使學生更好的把握問題的關鍵。 例1從字母a、b、c、d中任意取出兩個不同字母的試驗中,有哪些基本事件? 先讓學生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優點。 「設計意圖」將數形結合和分類討論的思想滲透到具體問題中來。由于沒有學習排列組合,因此用列舉法列舉基本事件的個數,不僅能讓學生直觀的感受到對象的總數,而且還能使學生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數這一難點 觀察對比,發現兩個模擬試驗和例1的共同特點: 讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結得到的結論,教師最后補充說明。 [經概括總結后得到: (1)試驗中所有可能出現的基本事件只有有限個;(有限性) (2)每個基本事件出現的可能性相等。(等可能性) 我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型。 「設計意圖」培養運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現了數學的化歸思想。啟發誘導的同時,訓練了學生觀察和概括歸納的能力。通過列出相同和不同點,能讓學生很好的理解古典概型。 、缬^察分析、推導方程 問題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算? 教師提出問題,引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結果,發現其中的聯系,最后概括總結得出古典概型計算任何事件的概率計算公式: 「設計意圖」鼓勵學生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學生感受數學化歸思想的優越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點。 提問: 。1)在例1的實驗中,出現字母"d"的概率是多少? 。2)在使用古典概型的概率公式時,應該注意什么? 「設計意圖」教師提問,學生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關鍵。 、枥}分析、推廣應用 例2單選題是標準化考試中常用的題型,一般是從A,B,c,D四個選項中選擇一個正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少? 學生先思考再回答,教師對學生沒有注意到的關鍵點加以說明。 「設計意圖」讓學生明確決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。鞏固學生對已學知識的掌握。 例3同時擲兩個骰子,計算: 。1)一共有多少種不同的結果? 。2)其中向上的點數之和是5的結果有多少種? 。3)向上的點數之和是5的概率是多少? 先給出問題,再讓學生完成,然后引導學生分析問題,發現解答中存在的問題。引導學生用列表來列舉試驗中的基本事件的總數。 「設計意圖」利用列表數形結合和分類討論,既能形象直觀地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養學生運用數形結合的思想,提高發現問題、分析問題、解決問題的能力,增強學生數學思維情趣,形成學習數學知識的積極態度。 、樘骄克枷、鞏固深化 問題思考:為什么要把兩個骰子標上記號?如果不標記號會出現什么情況?你能解釋其中的原因嗎? 要求學生觀察對比兩種結果,找出問題產生的原因。 「設計意圖」通過觀察對比,發現兩種結果不同的根本原因是--研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現了學生的主體地位,逐漸養成自主探究能力。 ㈥總結概括、加深理解 1.基本事件的特點 2.古典概型的特點 3.古典概型的概率計算公式 學生小結歸納,不足的地方老師補充說明。 「設計意圖」使學生對本節課的知識有一個系統全面的認識,并把學過的相關知識有機地串聯起來,便于記憶和應用,也進一步升華了這節課所要表達的本質思想,讓學生的認知更上一層。 、氩贾米鳂I 課本練習1、2、3 「設計意圖」進一步讓學生掌握古典概型及其概率公式,并能夠學以致用,加深對本節課的理解。 一、說教材 1.內容分析:本節課是“反比例函數”的第一節課,是繼正比例函數、一次函數之后,二次函數之前的又一類型函數,本節課主要通過豐富的生活事例,讓學生歸納出反比例函數的概念,并進一步體會函數是刻畫變量之間關系的數學模型,從中體會函數的模型思想。因此本節課重點是理解和領悟反比例函數的概念,所滲透的數學思想方法有:類比,轉化,建模。 2.學情分析:對八年級學生來說,雖然他們已經對函數,正比例函數,一次函數的概念、圖象、性質以及應用有所掌握,但他們面對新的一次函數時,還可能存在一些思維障礙,如學生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領悟和總結出反比例函數的概念,因此,本節課的難點是理解和領悟反比例函數的概念。 二、說教學目標 根據本人對《數學課程標準》的理解與分析,考慮學生已有的認知結構、心理特征,我把本課的目標定為: 1.從現實的情境和已有的知識經驗出發,討論兩個變量之間的相依關系,加深對函數概念的理解。 2.經歷抽象反比例函數概念的過程,領會反比例函數的意義,理解反比例函數的概念。 三、說教法 本節課從知識結構呈現的角度看,為了實現教學目標,我建立了“創設情境→建立模型→解釋知識→應用知識”的學習模式,這種模式清晰地再現了知識的生成與發展的過程,也符合學生的認知規律。于是,從教學內容的性質出發,我設計了如下的課堂結構:創設出電流、行程等情境問題讓學生發現新知,把上述問題進行類比,導出概念,獲得新知,最后總結評價、內化新知。 四、說學法 我認為學生將實際問題轉化成函數的能力是有限的,所以我借助多媒體輔助教學,指導學生通過類比、轉化、直觀形象的觀察與演示,親身經歷函數模型的轉化過程,為學生攻克難點創造條件,同時考慮到本課的重點是反比例函數概念的教學,也考慮到概念教學要從大量實際出發,通過事例幫助完成定義。 好學教育: 因此,我采用了“問題式探究法”的教法,利用多媒體設置豐富的問題情境,讓學生的思維由問題開始,到問題深化,讓學生的思維始終處于積極主動的狀態,并隨著問題的深入而跳躍。 【【必備】高中數學說課稿4篇】相關文章: 【必備】高中數學說課稿四篇06-17 高中數學經典說課稿范文06-24 高中數學說課稿(15篇)11-03 高中數學說課稿15篇10-16 高中數學經典優秀說課稿模板07-14 高中數學說課稿10篇06-13 高中數學說課稿三篇06-09 高中數學《什么是概率》說課稿范文01-27 高中數學說課稿《正弦定理》范文01-23高中數學說課稿 篇2
高中數學說課稿 篇3
高中數學說課稿 篇4