精選高中數學說課稿范文錦集五篇
作為一名為他人授業解惑的教育工作者,總歸要編寫說課稿,借助說課稿可以有效提升自己的教學能力。我們該怎么去寫說課稿呢?下面是小編收集整理的高中數學說課稿5篇,歡迎閱讀,希望大家能夠喜歡。
高中數學說課稿 篇1
1. 教材分析
1-1教學內容及包含的知識點
(1) 本課內容是高中數學第二冊第七章第三節《兩條直線的位置關系》的最后一個內容。
(2) 包含知識點:點到直線的距離公式和兩平行線的距離公式。
1-2教材所處地位、作用和前后聯系
本節課是兩條直線位置關系的最后一個內容,在此之前,有對兩線位置關系的定性刻畫:平行、垂直,以及對相交兩線的定量刻畫:夾角、交點。在此之后,有圓錐曲線方程,因而本節既是對前面兩線垂直、兩線交點的復習,又是為后面計算點線距離(在直線和圓錐曲線構成的組合圖形中)提供一套工具。
可見,本課有承前啟后的作用。
1-3教學大綱要求
掌握點到直線的距離公式
1-4高考大綱要求及在高考中的顯示形式
掌握點到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構成的組合圖形為背景,判斷直線和圓錐曲線的位置或構成三角形求高,涉及絕對值,直線垂直,最小值等。
1-5教學目標及確定依據
教學目標
(1) 掌握點到直線的距離的概念、公式及公式的推導過程,能用公式來求點線距離和線線距離。
(2) 培養學生探究性思維方法和由特殊到一般的研究能力。
(3) 認識事物之間相互聯系、互相轉化的辯證法思想,培養學生轉化知識的能力。
(4) 滲透人文精神,既注重學生的智慧獲得,又注重學生的情感發展。
確定依據:
中華人民共和國教育部制定的《全日制普通高級中學數學教學大綱》(20xx年4月第一版),《基礎教育課程改革綱要(試行)》,《高考考試說明》(20xx年)
1-6教學重點、難點、關鍵
(1) 重點:點到直線的距離公式
確定依據:由本節在教材中的地位確定
(2) 難點:點到直線的距離公式的推導
確定依據:根據定義進行推導,思路自然,但運算繁瑣;用等積法推導,運算較簡單,但思路不自然,學生易被動,主體性得不到體現。
分析“嘗試性題組”解題思路可突破難點
(3)關鍵:實現兩個轉化。一是將點線距離轉化為定點到垂足的距離;二是利用等積法將其轉化為直角三角形中三頂點的距離。
2.教法
2-1發現法:本節課為了培養學生探究性思維目標,在教學過程中,使老師的主導性和學生的主體性有機結合,使學生能夠愉快地自覺學習,通過學生自己練習“嘗試性題組”,引導、啟發學生分析、發現、比較、論證等,從而形成完整的數學模型。
確定依據:
(1)美國教育學家波利亞的教與學三原則:主動學習原則,最佳動機原則,階段漸進性原則。
(2)事物之間相互聯系,相互轉化的辯證法思想。
2-2教具:多媒體和黑板等傳統教具
3. 學法
3-1發現法:豐富學生的數學活動,學生經過練習、觀察、分析、探索等步驟,自己發現解決問題的方法,比較論證后得到一般性結論,形成完整的數學模型,再運用所得理論和方法去解決問題。
一句話:還課堂以生命力,還學生以活力。
3-2學情:
(1)知識能力狀況,本節為兩線位置關系的最后一個內容,在這之前學生已經系統的學習了直線方程的各種形式,有對兩線位置關系的定性認識和對兩線相交的定量認識,為本節推證公式涉及到直線方程、兩線垂直、兩線交點作好了知識儲備。同時學生對解析幾何的實質中,用坐標系溝通直線與方程的研究辦法,有了初步認識,數形結合的思想正逐漸趨于成熟。
(2)心理特點:又見“點到直線的距離”(初中已學習定義),學生既熟悉又陌生,既困惑又好奇,探詢動機由此而生。
(3)生活經驗:數學源于生活,生活中的點線距隨處可見,怎樣將實際問題數學化,是每個追求成長、追求發展的學生所渴求的一種研究能力。豐富的課堂數學活動能夠讓他們真正參與,體驗過程,錘煉意志,培養能力。
3-3學具:直尺、三角板
4. 教學評價
學生完成反思性學習報告,書寫要求:
(1) 整理知識結構。
(2) 總結所學到的基本知識,技能和數學思想方法。
(3) 總結在學習過程中的經驗,發明發現,學習障礙等,說明產生障礙的原因。
(4) 談談你對老師教法的建議和要求。
作用:
(1) 通過反思使學生對所學知識系統化。反思的過程實際上是學生思維內化,知識深化和認知牢固化的一個心理活動過程。
(2) 報告的寫作本身就是一種創造性活動。
(3) 及時了解學生學習過程中的知識缺陷,思維障礙,有利于教師了解學生對自己的教法的滿意度和效果,以便作出及時調整,及時進行補償性教學。
5. 板書設計
(略)
6. 教學的反思總結
心理歷練,得意之處,困惑之處,知識的傳承發展,如何修正完善等。
高中數學說課稿 篇2
【一】教學背景分析
1。教材結構分析
《圓的方程》安排在高中數學第二冊(上)第七章第六節。圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用。圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用。
2。學情分析
圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的。但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難。另外學生在探究問題的能力,合作交流的意識等方面有待加強。
根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:
3。教學目標
。1) 知識目標:①掌握圓的標準方程;
②會由圓的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程;
、劾脠A的標準方程解決簡單的實際問題。
(2) 能力目標:①進一步培養學生用代數方法研究幾何問題的能力;
、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用;
、墼鰪妼W生用數學的意識。
。3) 情感目標:①培養學生主動探究知識、合作交流的意識;
、谠隗w驗數學美的過程中激發學生的學習興趣。
根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:
4。 教學重點與難點
(1)重點:圓的標準方程的求法及其應用。
(2)難點: ①會根據不同的已知條件求圓的標準方程;
、谶x擇恰當的坐標系解決與圓有關的實際問題。
為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析:
好學教育:
【二】教法學法分析
1。教法分析 為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上。另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程。
2。學法分析 通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應用圓的標準方程,熟悉用待定系數法求的過程。 下面我就對具體的教學過程和設計加以說明:
【三】教學過程與設計
整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節:
創設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高
反饋訓練 形成方法 小結反思 拓展引申
下面我從縱橫兩方面敘述我的教學程序與設計意圖。
首先:縱向敘述教學過程
。ㄒ唬﹦撛O情境——啟迪思維
問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2。7m,高為3m的貨車能不能駛入這個隧道?
通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決。一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題。用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。
通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節。
。ǘ┥钊胩骄俊@得新知
問題二 1。根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
2。如果圓心在,半徑為時又如何呢?
好學教育:
這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程。然后再讓學生對圓心不在原點的情況進行探究。我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法。
得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節。
。ㄈ⿷门e例——鞏固提高
I。直接應用 內化新知
問題三 1。寫出下列各圓的標準方程:
(1)圓心在原點,半徑為3;
。2)經過點,圓心在點。
2。寫出圓的圓心坐標和半徑。
我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備。
II。靈活應用 提升能力
問題四 1。求以點為圓心,并且和直線相切的圓的方程。
2。求過點,圓心在直線上且與軸相切的圓的方程。
3。已知圓的方程為,求過圓上一點的切線方程。
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經過圓上一點的切線的方程是什么?
我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程。第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間。最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮。
III。實際應用 回歸自然
問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。
好學教育:
我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識。
。ㄋ模┓答佊柧殹纬煞椒
問題六 1。求過原點和點,且圓心在直線上的圓的標準方程。
2。求圓過點的切線方程。
3。求圓過點的切線方程。
接下來是第四環節——反饋訓練。這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果。
。ㄎ澹┬〗Y反思——拓展引申
1。課堂小結
把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r 的圓的標準方程為:
圓心在原點時,半徑為r 的圓的標準方程為:。
、谝阎獔A的方程是,經過圓上一點的切線的方程是:。
2。分層作業
。ˋ)鞏固型作業:教材P81—82:(習題7。6)1,2,4。(B)思維拓展型作業:試推導過圓上一點的切線方程。
3。激發新疑
問題七 1。把圓的標準方程展開后是什么形式?
2。方程表示什么圖形?
在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了。在知識的拓展中再次掀起學生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。
以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計: 橫向闡述教學設計
。ㄒ唬┩怀鲋攸c 抓住關鍵 突破難點
好學教育:
求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的同時突破了難點。
第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五。這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破。
。ǘ⿲W生主體 教師主導 探究主線
本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終。從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的。另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務。
(三)培養思維 提升能力 激勵創新
為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力。在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行。
以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變。最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”。
高中數學說課稿 篇3
尊敬的各位專家、評委:
大家好!
我是盧龍縣木井中學數學教師xx,我今天說課的題目是:人教A版普通高中課程標準實驗教科書 數學必修5第一章第一節的第一課時《正弦定理》,依據新課程標準對教材的要求,結合我對教材的理解,我將從以下幾個方面說明我的設計和構思。
一、教材分析
“解三角形”既是高中數學的基本內容,又有較強的應用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內容從知識體系上看,應屬于三角函數這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內容是用代數方法解決幾何問題的典型內容之一。而本課“正弦定理”,作為單元的起始課,是在學生已有的三角函數及向量知識的基礎上,通過對三角形邊角關系作量化探究,發現并掌握正弦定理(重要的解三角形工具),通過這一部分內容的學習,讓學生從“實際問題”抽象成“數學問題”的建模過程中,體驗 “觀察——猜想——證明——應用”這一思維方法,養成大膽猜想、善于思考的品質和勇于求真的精神。同時在解決問題的過程中,感受數學的力量,進一步培養學生對數學的學習興趣和“用數學”的意識。
二、學情分析
我所任教的學校是我縣一所農村普通中學,大多數學生基礎薄弱,對“一些重要的數學思想和數學方法”的應用意識和技能還不高。但是,大多數學生對數學的興趣較高,比較喜歡數學,尤其是象本節課這樣與實際生活聯系比較緊密的內容,相信學生能夠積極配合,有比較不錯的表現。
三、教學目標
1、知識和技能:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。
過程與方法:學生參與解題方案的探索,嘗試應用觀察——猜想——證明——應用”等思想方法,尋求最佳解決方案,從而引發學生對現實世界的一些數學模型進行思考。
情感、態度、價值觀:培養學生合情合理探索數學規律的數學思想方法,通過平面幾何、三角形函數、正弦定理、向量的數量積等知識間的聯系來體現事物之間的普遍聯系與辯證統一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數學學習興趣和主動性,鍛煉探究精神。樹立“數學與我有關,數學是有用的,我要用數學,我能用數學”的理念。
2、教學重點、難點
教學重點:正弦定理的發現與證明;正弦定理的簡單應用。
教學難點:正弦定理證明及應用。
四、教學方法與手段
為了更好的達成上面的教學目標,促進學習方式的轉變,本節課我準備采用“問題教學法”,即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發興趣、突出重點,突破難點,提高課堂效率,并引導學生采取自主探究與相互合作相結合的學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結構。
五、教學過程
為了很好地完成我所確定的教學目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學生、貼近時代的原則,我設計了這樣的教學過程:
(一)創設情景,揭示課題
問題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠呢?
1671年兩個法國天文學家首次測出了地月之間的距離大約為 385400km,你知道他們當時是怎樣測出這個距離的嗎?
問題2:在現在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實并不難,只要你學好本章內容即可掌握其原理。(板書課題《解三角形》)
[設計說明]引用教材本章引言,制造知識與問題的沖突,激發學生學習本章知識的興趣。
(二)特殊入手,發現規律
問題3:在初中,我們已經學習了《銳角三角函數和解直角三角形》這一章,老師想試試你的實力,請你根據初中知識,解決這樣一個問題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?
引導啟發學生發現特殊情形下的正弦定理
(三)類比歸納,嚴格證明
問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現在如果我為難為難你,讓你也當一回老師,如果有個學生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個結論還成立嗎?
[設計說明]此時放手讓學生自己完成,如果感覺自己解決有困難,學生也可以前后桌或同桌結組研究,鼓勵學生用不同的方法證明這個結論,在巡視的過程中讓不同方法的學生上黑板展示,如果沒有用向量的學生,教師引導提示學生能否用向量完成證明。
問題5:好根據剛才我們的研究,說明這一結論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個結論仍然成立?我們光說成立不行,必須有能力進行嚴格的理論證明,你有這個能力嗎?下面我希望你能用實力告訴我,開始。(啟發引導學生用多種方法加以研究證明,尤其是向量法,在下節余弦定理的證明中還要用,因此務必啟發學生用向量法完成證明。)
[設計說明] 放手給學生實踐的機會和時間,使學生真正的參與到問題解決的過程中去,讓學生在學數學的實踐中去感悟和提高數學的思維方法和思維習慣。同時,考慮到有部分同學基礎較差,考個人或小組可能無法完成探究任務,教師在學生動手的同時,通過巡查,讓提前證明出結論的同學上黑板完成,這樣做一方面肯定了先完成的同學的先進性,鍛煉了上黑板同學的解題過程的書寫規范性,同時,也讓從無從下手的同學有個參考,不至于閑呆著浪費時間。
問題6:由此,你能否得到一個更一般的結論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節課研究的主要內容,大名鼎鼎的正弦定理(此時板書課題并用紅色粉筆標示出正弦定理內容)
教師講解:告訴大家,其實這個大名鼎鼎的正弦定理是由伊朗著名的天文學家阿布爾─威發﹝940-998﹞首先發現與證明的。中亞細亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個證明。也有說正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統整理前人成就的基礎上得出的。不管怎樣,我們說在1000年以前,人們就發現了這個充滿著數學美的結論,不能不說也是人類數學史上的一個奇跡。老師希望21世紀的你能在今后的學習中也研究出一個被后人景仰的某某定理來,到那時我也就成了數學家的老師了。當然,老師的希望能否變成現實,就要看大家的了。
[設計說明] 通過本段內容的講解,滲透一些數學史的內容,對學生不僅有數學美得熏陶,更能激發學生學習科學文化知識的熱情。
(四)強化理解,簡單應用
下面請大家看我們的教材2-3頁到例題1上邊,并自學解三角形定義。
[設計說明] 讓學生看看書,放慢節奏,有利于學生消化和吸收剛才的內容,同時教師可以利用這段時間對個別學困生進行輔導,以減少掉隊的同學數量,同時培養學生養成自覺看書的好習慣。
我們學習了正弦定理之后,你覺得它有什么應用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個簡單的問題:
問題7:(教材例題1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。
(本題簡單,找兩位同學上黑板完成,其他同學在底下練習本上完成,同學可以小聲音討論,完成后教師根據學生實踐中發現的問題給予必要的講評)
[設計說明] 充分給學生自己動手的時間和機會,由于本題是唯一解,為將來學生感悟什么情況下三角形有唯一解創造條件。
強化練習
讓全體同學限時完成教材4頁練習第一題,找兩位同學上黑板。
問題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。
[設計說明]例題2較難,目的是使學生明確,利用正弦定理有兩種可能,同時,引導學生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學有余力的同學鼓勵他們自學探究與發現教材8頁得內容:《解三角形的進一步討論》
(五)小結歸納,深化拓展
1、正弦定理
2、正弦定理的證明方法
3、正弦定理的應用
4、涉及的數學思想和方法。
[設計說明] 師生共同總結本節課的收獲的同時,引導學生學會自己總結,讓學生進一步回顧和體會知識的形成、發展、完善的過程。
(六)布置作業,鞏固提高
1、教材10頁習題1.1A組第1題。
2、學有余力的同學探究10頁B組第1題,體會正弦定理的其他證明方法。
證明:設三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC
[設計說明] 對不同水平的學生設計不同梯度的作業,尊重學生的個性差異,有利于因材施教的教學原則的貫徹。
高中數學說課稿 篇4
高中數學第三冊(選修)Ⅱ第一章第2節第一課時
一、教材分析
教材的地位和作用
期望是概率論和數理統計的重要概念之一,是反映隨機變量取值分布的特征數,學習期望將為今后學習概率統計知識做鋪墊。同時,它在市場預測,經濟統計,風險與決策等領域有著廣泛的應用,為今后學習數學及相關學科產生深遠的影響。
教學重點與難點
重點:離散型隨機變量期望的概念及其實際含義。
難點:離散型隨機變量期望的實際應用。
[理論依據]本課是一節概念新授課,而概念本身具有一定的抽象性,學生難以理解,因此把對離散性隨機變量期望的概念的教學作為本節課的教學重點。此外,學生初次應用概念解決實際問題也較為困難,故把其作為本節課的教學難點。
二、教學目標
[知識與技能目標]
通過實例,讓學生理解離散型隨機變量期望的概念,了解其實際含義。
會計算簡單的離散型隨機變量的期望,并解決一些實際問題。
[過程與方法目標]
經歷概念的建構這一過程,讓學生進一步體會從特殊到一般的思想,培養學生歸納、概括等合情推理能力。
通過實際應用,培養學生把實際問題抽象成數學問題的能力和學以致用的數學應用意識。
[情感與態度目標]
通過創設情境激發學生學習數學的情感,培養其嚴謹治學的態度。在學生分析問題、解決問題的過程中培養其積極探索的精神,從而實現自我的價值。
三、教法選擇
引導發現法
四、學法指導
“授之以魚,不如授之以漁”,注重發揮學生的主體性,讓學生在學習中學會怎樣發現問題、分析問題、解決問題。
五、教學的基本流程設計
高中數學第三冊《離散型隨機變量的期望》說課教案.rar
高中數學說課稿 篇5
尊敬的各位專家、評委:
上午好!
今天我說課的課題是人教A版必修1第二章第二節《對數函數》。
我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
一、教材分析
地位和作用
本章學習是在學生完成函數的第一階段學習(初中)的基礎上,進行第二階段的函數學習。而對數函數作為這一階段的重要的基本初等函數之一,它是在學生已經學習了指數函數及對數的內容,這為過渡到本節的學習起著鋪墊作用!皩岛瘮怠边@節教材,是在沒有學習反函數的基礎上研究的指數函數和對數函數的自變量和因變量之間的關系。同時對數函數作為常用數學模型在解決社會生活中的實例有著廣泛的應用,本節課的學習為學生進一步學習,參加生產和實際生活提供必要的基礎知識。
二、目標分析
。ㄒ唬、教學目標
根據《對數函數》在教材內容中的地位與作用,結合學情分析,本節課教學應實現如下的`教學目標:
1、知識與技能
(1)、進一步體會函數是描述變量之間的依賴關系的重要數學模型;
。2)、理解對數函數的概念、掌握對數函數的圖像和性質;
。3)、由實際問題出發,培養學生探索知識和抽象概括知識等方面的能力。
2、過程與方法
引導學生觀察,探尋變量和變量的對應關系,通過歸納、抽象、概括,自主建構對數函數的概念;體驗結合舊知識探索新知識,研究新問題的快樂。
3、情感態度與價值觀
通過對對數函數函數圖像和性質的探究過程,培養學生發現問題,探索問題,不斷超越的創新品質。在民主、和諧的教學氣氛中,促進師生的情感交流。
。ǘ┙虒W重點、難點及關鍵
1、重點:對數函數的概念、圖像和性質;在教學中只有突出這個重點,才能使教材脈絡分明,才能有利于學生聯系舊知識,學習新知識。
2、 難點:底數a對對數函數的圖像和性質的影響。
[關鍵]對數函數與指數函數的類比教學。
由指數函數的圖像過渡到對數函數的圖像,通過類比分析達到深刻地了解對數函數的圖像及其性質是掌握重點和突破難點的關鍵,在教學中一定要使學生的思考緊緊圍繞圖像,數形結合,加強直觀教學,使學生能形成以圖像為根本,以性質為主體的知識網絡,同時在立體的講解中,重視加強題組的設計和變形,使教學真正體現出由淺入深,由易到難,由具體到抽象的特點,從而突破重點、突破難點。
三、教法、學法分析
(一)、教法
教學過程是教師和學生共同參與的過程,啟發學生自主性學習,充分調動學生的積極性、主動性;有效地滲透數學思想方法,提高學生素質。根據這樣的原則和所要完成的教學目標,并為激發學生的學習興趣,我采用如下的教學方法:
1、啟發引導學生思考、分析、實驗、探索、歸納;
2、采用“從特殊到一般”、“從具體到抽象”的方法;
3、體現“對比聯系”、“數形結合”及“分類討論”的思想方法;
4、投影儀演示法。
在整個過程中,應以學生看,學生想,學生議,學生練為主體,教師在學生仔細觀察、類比、想象的基礎上通過問題串的形式加以引導點撥,與指數函數性質對照,歸納,整理,只有這樣,才能喚起學生對原有知識的回憶,自覺地找到新舊知識的聯系,使新學知識更牢固,理解更深刻。
。ǘ、學法
教給學生方法比教給學生知識更重要,本節課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:
1、對照比較學習法:學習對數函數,處處與指數函數相對照;
2、探究式學習法:學生通過分析、探索,得出對數函數的定義;
3、自主性學習法:通過實驗畫出函數圖像、觀察圖像自得其性質;
4、反饋練習法:檢驗知識的應用情況,找出未掌握的內容及其差距。
四、教學過程分析
(一)、教學過程設計
1、創設情境,提出問題。
在某細胞分裂過程中,細胞個數y是分裂次數x的函數y=2x,因此,知道x的值(輸入值是分裂次數)就能求出y的值(輸出值為細胞的個數),這樣就建立了一個細胞個數和分裂次數x之間的函數關系式。
問題一:這是一個怎樣的函數模型類型呢?
設計意圖
復習指數函數
問題二:現在我們來研究相反的問題,如果知道了細胞的個數y,如何求分裂的次數x呢?這將會是我們研究的哪類問題?
設計意圖
為了引出對數函數
問題三:在關系式x=log2y每輸入一個細胞的個數y的值,是否一定都能得到唯一一個分裂次數x的值呢?
設計意圖
。1)、為了讓學生更好地理解函數;
。2)、為了讓學生更好地理解對數函數的概念。
2、引導探究,建構概念。
。1)、對數函數的概念:
同樣,在前面提到的發射性物質,經過的時間x年與物質剩余量y的關系式為y=0.84x,我們也可以把它改成對數式x=log0.84y,其中x年夜可以看作物質剩余量y的函數,可見這樣的問題在現實生活中還是不少的。
設計意圖
前面的問題情景的底數為2,而這個問題情景的底數是0.84,我認為這個情景并不是多余的,其實它暗示了對數函數的底數與指數函數的底數一樣有兩類。
但是在習慣上,我們用x表示自變量,用y表示函數值。
問題一:你能把以上兩個函數表示出來嗎?
問題二:你能得到此類函數的一般式嗎?
設計意圖
體現出了由特殊到一般的數學思想
問題三:在y=logax中,a有什么限制條件嗎?請結合指數式給以解釋。
問題四:你能根據指數函數的定義給出對數函數的定義嗎?
問題五:x=logay與y=ax中的x,y的相同之處是什么?不同之處是什么?
設計意圖
前四個問題是為了引導出對數函數的概念,然而,光有前四個問題還是不夠的,學生最容易忽略或最不容易理解的是函數的定義域,所以設計這個問題是為了讓學生更好地理解對數函數的定義域。
(2)、對數函數的圖像與性質
問題:有了研究指數函數的經歷,你覺得下面該學習什么內容了?
設計意圖
提示學生進行類比學習
合作探究1:借助計算器在同一直角坐標系中畫出下列兩組函數的圖像,并觀察各族函數圖像,探求他們之間的關系。
y=2x;y=log2x y=( )x,y=log x
合作探究2:當a>0,a≠ 1,函數y=ax與y=logax圖像之間有什么關系?
設計意圖
在這兒體現“從特殊到一般”、“從具體到抽象”的方法。
合作探究3:分析你所畫的兩組函數的圖像,對照指數函數的性質,總結歸納對數函數的性質。
設計意圖
學生討論并交流各自的而發現成果,教師結合學生的交流,適時歸納總結,并板書對數函數的性質)。問題1:對數函數y=logax( a>0,a≠1,)是否具有奇偶性,為什么?
問題2:對數函數y=logax( a>0,a≠1,),當a>1時,x取何值,y>0,x取何值,y<0,當0 問題3:對數式logab的值的符號與a,b的取值之間有何關系? 知識拓展:函數y=ax稱為y=logax的反函數,反之,也成立,一般地,如果函數y=f(x)存在反函數,那么它的反函數記作y=f-1(x)。 3、自我嘗試,初步應用。 例1:求下列函數的定義域 y=log0.2(4-x)(該題主要考查對函數y=logax的定義域(0,+∞)這一限制條件,根據函數的解析式求得不等式,解對應的不等式。) 例2:利用對數函數的性質,比較下列各組數中兩個數的大。 (1)、㏒2 3.4,log2 3.8; (2)、log0.5 1.8,log0.5 2.1; 。3)、log7 5,log6 7 。ㄔ谶@兒要求學生通過回顧指數函數的有關性質比較大小的步驟和方法,完成完成前兩題,最后一題可以通過教師的適當點撥完成解答,最后進行歸納總結比較數的大小常用的方法) 合作探究4:已知logm 4 設計意圖 該題不僅運用了對數函數的圖像和性質,還培養了學生數形結合、分類討論等數學思想。 4、當堂訓練,鞏固深化。 通過學生的主體性參與,使學生深刻體會到本節課的主要內容和思想方法,從而實現對知識的再次深化。 采用課后習題1,2,3. 5、小結歸納,回顧反思。 小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。 (1)、小結: 、賹岛瘮档母拍 、趯岛瘮档膱D像和性質 ③利用對數函數的性質比較大小的一般方法和步驟, 。2)、反思 我設計了三個問題 、佟⑼ㄟ^本節課的學習,你學到了哪些知識? 、、通過本節課的學習,你最大的體驗是什么? 、、通過本節課的學習,你掌握了哪些技能? 。ǘ、作業設計 作業分為必做題和選做題,必做題是對本節課學生知識水平的反饋,選做題是對本節課內容的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生的自主發展、合作探究的學習氛圍的形成。 我設計了以下作業: 必做題:課后習題A 1,2,3; 選做題:課后習題B 1,2,3; (三)、板書設計 板書要基本體現課堂的內容和方法,體現課堂進程,能簡明扼要反映知識結構及其相互關系:能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。 五、評價分析 學生學習的結果評價固然重要,但是更重要的是學生學習的過程評價。我采用了及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對本節是否有一個完整的集訓,并進行及時的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。 謝謝! 【精選高中數學說課稿范文錦集五篇】相關文章: 精選高中數學說課稿范文錦集8篇08-07 精選高中數學說課稿范文錦集7篇08-02 精選高中數學說課稿范文錦集十篇08-18 高中數學說課稿范文錦集7篇08-01 高中數學說課稿范文錦集七篇08-13 關于高中數學說課稿范文錦集六篇08-11 關于高中數學說課稿范文錦集9篇08-10 有關高中數學說課稿范文錦集五篇08-09 有關高中數學說課稿范文錦集10篇08-09