1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中數學說課稿

        時間:2022-11-22 09:52:46 高中說課稿 我要投稿

        高中數學說課稿【推薦】

          在教學工作者開展教學活動前,常常要寫一份優秀的說課稿,借助說課稿可以更好地提高教師理論素養和駕馭教材的能力。怎樣寫說課稿才更能起到其作用呢?下面是小編精心整理的高中數學說課稿,希望對大家有所幫助。

        高中數學說課稿【推薦】

        高中數學說課稿1

          一、本節內容的地位與重要性

          "分類計數原理與分步計數原理"是《高中數學》一節獨特內容。這一節課與排列、組合的基本概念有著緊密的聯系,通過對這一節課的學習,既可以讓學生接受、理解分類計數原理與分步計數原理,還為日后排列、組合和二項式定理的教學做好準備,起到奠基的重要作用。

          二、關于教學目標的確定

          根據兩個基本原理的地位和作用,我認為本節課的教學目標是:

         。1)使學生正確理解兩個基本原理的概念;

         。2)使學生能夠正確運用兩個基本原理分析、解決一些簡單問題;

         。3)提高分析、解決問題的能力

         。4)使學生樹立"由個別到一般,由一般到個別"的認識事物的辯證唯物主義哲學思想觀點。

          三、關于教學重點、難點的選擇和處理

          中學數學課程中引進的關于排列、組合的計算公式都是以兩個計數原理為基礎的,而一些較復雜的排列、組合應用題的求解,更是離不開兩個基本原理,所以正確理解兩個基本原理并能解決實際問題是學習本章的重點內容。

          正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件。而原理中提到的分步和分類,學生不是一下子就能理解深刻的,面對復雜的事物和現象學生對分類和分步的選擇容易產生錯誤的認識,所以分類計數原理和分步計數原理的準確應用是本節課的教學難點。必需使學生認清兩個基本原理的實質就是完成一件事需要分類還是分步,才能使學生接受概念并對如何運用這兩個基本原理有正確清楚的認識。教學中兩個基本問題的引用及引伸,就是為突破難點做準備。

          四、關于教學方法和教學手段的選用

          根據本節課的內容及學生的實際水平,我采取啟發引導式教學方法并充分發揮電腦多媒體的輔助教學作用。

          啟發引導式作為一種啟發式教學方法,體現了認知心理學的基本理論。符合教學論中的自覺性和積極性、鞏固性、可接受性、教學與發展相結合、教師的主導作用與學生的主體地位相統一等原則,教學過程中,教師采用點撥的方法,啟發學生通過主動思考、動手操作來達到對知識的"發現"和接受,進而完成知識的內化,使書本的知識成為自己的知識。

          電腦多媒體以聲音、動畫、影像等多種形式強化對學生感觀的刺激,這一點是粉筆和黑板所不能比擬的,采取這種形式,可以極大提高學生的學習興趣,加大一堂課的信息容量,使教學目標更完美地體現。另外,電腦軟件具有良好的交互性,可以將教師的思路和策略以軟件的形式來體現,更好地為教學服務。

          五、關于學法的指導

          "授人以魚,不如授人以漁",在教學過程中,不但要傳授學生課本知識,還要培養學生主動觀察、主動思考、自我發現的學習能力,增強學生的綜合素質,從而達到教學的目標。教學中,教師創設疑問,學生想辦法解決疑問,通過教師的啟發點撥,類比推理,在積極的雙邊活動中,學生找到了解決疑難的方法。整個過程貫穿"設疑"——"思索"——"發現"——"解惑"四個環節,學生隨時對所學知識產生有意注意,思想上經歷了從肯定到否定、又從否定到肯定的辨證思維過程,符合學生認知水平,培養了學習能力。

          六、關于教學程序的設計

         。ㄒ唬┱n題導入

          這是本章的第一節課,是起始課,講起始課時,把這一學科的內容作一個大概的介紹,能使學生從一開始就對將要學習的知識有一個初步的了解,并為下面的學習打下思想基礎。所以,首先閱讀引言,明確任務,激發興趣。由學生感興趣的乒乓球比賽提出問題,引出學習本節的必要性,明確研究計數方法是本章內容的獨特性,從應用的廣泛看學習本章內容的重要性。同時板書課題(分類計數原理與分步計數原理)

          這樣做,能使學生明白本節內容的地位和作用,激發其學習新知識的欲望,為順利完成教學任務做好思維上的準備。

         。ǘ┬抡n講授

          通過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都可以獨立地把從甲地到乙地這件事辦好。

          緊跟著給出:

          引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點共有多少種不同的走法?

          引伸2:若完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,每一類中的每一種方法均可完成這件事,那么完成這件事共有多少種不同方法?

          這個問題的兩個引申由漸入深、循序漸進為學生接受分類計數原理做好了準備。

          板書分類計數原理內容:

          完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,那么完成這件事共有 種不同的方法。(也稱加法原理)

          此時,趁學生對于原理有了一個較清晰的認識,引導學生分析分類計數原理內容,啟發總結得下面三點注意:(出示幻燈片)

         。1)各分類之間相互獨立,都能完成這件事;

         。2)根據問題的特點在確定的分類標準下進行分類;

         。3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不同兩類的兩種方法都是不同的方法。

          這樣做加深學生對分類計數原理的正確理解,突出了重點,突破了難點。

          接下來給出問題2:(出示幻燈片)

          由A村去B村的道路有3條,由B村去C村的道路有2條(見圖9-1),從A村經B村去C村,共有多少種不同的走法?

          提出問題:問題1與問題2同是研究從甲地到乙地的不同走法,請找出這兩個問題的不之處?學生會發現問題1中采用乘火車或乘汽車都可以從甲地到乙地,而問題2中必須經過先乘火車后乘汽車兩個步驟才能完成從甲地到乙地這件事。

          問題2的講授采用給出問題,配圖分析,組織討論,強調分步。用多媒體配不同的顏色閃現出六種不同的走法,讓學生列式求出不同走法數,并列舉所有走法。

          歸納得出:分步計數原理(板書原理內容)

          分步計數原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法。那么,完成這件事共有

          N=m1×m2×…×mn

          種不同的方法。

          同樣趁學生對定理有一定的認識,引導學生分析分步計數原理內容,啟發總結得下面三點注意:(出示幻燈片)

         。1) 各步驟相互依存,只有各個步驟完成了,這件事才算完成;

         。2) 根據問題的特點在確定的分步標準下分步;

          (3) 分步時要注意滿足完成一件事必須并且只需連續完成這N個步驟這件事才算完成。

          (三)應用舉例

          教材例1:(書架取書問題)引導學生分析解答,注意區分是分類還是分步。

          例2:由數字0,1,2,3,4可以組成多少個三位整數(各位上的數字允許重復)?本題設置了4個問題:

          (1) 每一個三位數是由什么構成的?(三個整數字)

          (2) 023是一個三位數嗎?(百位上不能是0)

          (3) 組成一個三位數需要怎么做?(分成三個步驟來完成:第一步確定百位上的數字;第二步確定十位上的數字;第三步確定個位上的數字)

         。4) 怎樣表述?

          教師巡視指導、并歸納

          解:要組成一個三位數,需要分成三個步驟:第一步確定百位上的數字,從1~4這4個數字中任選一個數字,有4種選法;第二步確定十位上的數字,由于數字允許重復,共有5種選法;第三步確定個位上的數字,仍有5種選法。根據分步計數原理,得到可以組成的三位整數的個數是N=4×5×5=100.

          答:可以組成100個三位整數。

         。ń處煹倪B續發問、啟發、引導,幫助學生找到正確的解題思路和計算方法,使學生的分析問題能力有所提高。

          教師在第二個例題中給出板書示范,能幫助學生進一步加深對兩個基本原理實質的理解,周密的考慮,準確的表達、規范的書寫,對于學生周密思考、準確表達、規范書寫良好習慣的形成有著積極的促進作用,也可以為學生后面應用兩個基本原理解排列、組合綜合題打下基礎)

         。ㄋ模w納小結

          師:什么時候用分類計數原理、什么時候用分步計數原理呢?

          生:分類時用分類計數原理,分步時用分步計數原理。

          師:應用兩個基本原理時需要注意什么呢?

          生:分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的。

         。ㄎ澹┱n堂練習

          P222:練習1~4.學生板演第4題

         。▽τ陬}4,教師有必要對三個多項式乘積展開后各項的構成給以提示)

          (六)布置作業

          P222:練習5,6,7.

          補充題:

          1.在所有的兩位數中,個位數字小于十位數字的共有多少個?

         。ㄌ崾荆喊词簧蠑底值拇笮】梢苑譃9類,共有9+8+7+…+2+1=45個個位數字小于十位數字的兩位數)

          2.某學生填報高考志愿,有m個不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不同的志愿,求該生填寫志愿的方式的種數。

         。ㄌ崾荆盒枰慈齻志愿分成三步。共有m(m-1)(m-2)種填寫方式)

          3.在所有的三位數中,有且只有兩個數字相同的三位數共有多少個?

          (提示:可以用下面方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個只有兩個數字相同的三位數)

          4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不同的選法?

          (提示:由于8+5=13>10,所以10人中必有3人既會英語又會日語。(1)N=5+2+3;(2)N=5×2+5×3+2×3)

          只要大家用心學習,認真復習,就有可能在高中的戰場上考取自己理想的成績。

        高中數學說課稿2

          一、教材分析:

          1、教材的地位與作用。

          本節資料是在學生學習了"事件的可能性的基礎上來學習如何預測不確定事件(隨機事件)發生的可能性的大小。"用概率預測隨機發生的可能性大小,在日常生活、自然、科技領域有著廣泛的應用,學習本單元知識,無論是今后繼續深造(高中學習概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學生較難理解。

          在教材的處理上,采取小單元教學,本節課安排讓學生了解求隨機事件概率的兩種方法,目的是讓學生能夠比較系統地理解概率的意義及求概率的方法,為下頭學習求比較復雜的情景的概率打下基礎。

          2、重點與難點。

          重點:對概率意義的理解,經過多次重復實驗,用頻率預測概率的方法,以及用列舉法求概率的方法。

          難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發生的總數及總的結果數的分析。

          二、目的分析:

          知識與技能:掌握用頻率預測概率和用列舉法求概率方法。

          過程與方法:組織學生自主探究,合作交流,引導學生觀察試驗和統計的結果,進而進行分析、歸納、總結,了解并感受概率的定義的過程,引導學生從數學的視角觀察客觀世界,用數學的思維思考客觀世界,以數學的語言描述客觀世界。

          情感態度價值觀:學生經歷觀察、分析、歸納、確認等數學活動,感受數學活動充滿了探索性與創造性,感受量變與質變的對立統一規律,同時為概率的精準、新穎、獨特的思維方法所震撼,激發學生學習數學的熱情,增強對數學價值觀的認識。

          三、教法、學法分析:

          引導學生自主探究、合作交流、觀察分析、歸納總結,讓學生經歷知識(概率定義計算公式)的產生和發展過程,讓學生在數學活動中學習數學、掌握數學,并能應用數學解決現實生活中的實際問題,教師是學生學習的組織者、合作者和指導者,精心設計教學情境,有序組織學生活動,讓課堂充滿生機活力,體現"教"為"學"服務這一宗旨。

          四、教學過程分析:

          1、引導學生探究

          精心設計問題一,學生經過對問題一的探究,一方面復習前面學過的"確定事件和不確定事件"的知識,為學好本節資料理清知識障礙,二是讓學生明確為什么要學習概率(如何預測隨機事件可能性發生大小)。引導學生對問題二的探究與觀察實驗數據,使學生了解概率這一重要概念的實際背景,感受并相信隨機事件的發生中存在著統計規律性,感受數學規律的真實的發現過程。

          2、歸納概括

          學生從試驗中得到的統計數字及概率呈現穩定在某一數值附近這一規律,讓學生明確概率定義的由來。

          引導學生重新對問題一和問題二的探究,分析某事件發生的各種可能性在全部可能發生結果中所占比例,得到用列舉法求概率的公式,引導學生進行理性思維,邏輯分析,既培養學生的分析問題本事,又讓學生明確用列舉法求概率這一簡便快捷方法的合理性。

          3、舉例應用

         、乓龑W生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學生掌握用列舉法求概率的方法。

         、埔龑W生對練習中的問題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。

          4、深化發展

         、旁O置3個小題目,引導學生歸納、分析、總結,加深對知識與方法的理解,并學會靈活運用。

         、谱寣W生設計活動資料,對知識進行升華和拓展,引導學生創造性地運用知識思考問題和解決問題,從而培養學生的創新意識和創新本事。

        高中數學說課稿3

          一、教材結構與內容簡析

          1本節內容在全書及章節的地位:

          《向量》出現在高中數學第一冊(下)第五章第1節。本節內容是傳統意義上《平面解析幾何》的基礎部分,因此,在《數學》這門學科中,占據極其重要的地位。

          2數學思想方法分析:

         。1)從“向量可以用有向線段來表示”所反映出的“數”與“形”之間的轉化,就可以看到《數學》本身的“量化”與“物化”。

          (2)從建構手段角度分析,在教材所提供的材料中,可以看到“數形結合”思想。

          二、教學目標

          根據上述教材結構與內容分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:

          1基礎知識目標:掌握“向量”的概念及其表示方法,能利用它們解決相關的問題。

          2能力訓練目標:逐步培養學生觀察、分析、綜合和類比能力,會準確地闡述自己的思路和觀點,著重培養學生的認知和元認知能力。

          3創新素質目標:引導學生從日常生活中挖掘數學內容,培養學生的發現意識和整合能力;《向量》的教學旨在培養學生的“知識重組”意識和“數形結合”能力。

          4個性品質目標:培養學生勇于探索,善于發現,獨立意識以及不斷超越自我的創新品質。

          三、教學重點、難點、關鍵

          重點:向量概念的引入。

          難點:“數”與“形”完美結合。

          關鍵:本節課通過“數形結合”,著重培養和發展學生的認知和變通能力。

          四、教材處理

          建構主義學習理論認為,建構就是認知結構的組建,其過程一般是先把知識點按照邏輯線索和內在聯系,串成知識線,再由若干條知識線形成知識面,最后由知識面按照其內容、性質、作用、因果等關系組成綜合的知識體。本課時為何提出“數形結合”呢,應該說,這一處理方法正是基于此理論的體現。其次,本節課處理過程力求達到解決如下問題:知識是如何產生的?如何發展?又如何從實際問題抽象成為數學問題,并賦予抽象的數學符號和表達式,如何反映生活中客觀事物之間簡單的和諧關系。

          五、教學模式

          教學過程是教師活動和學生活動的十分復雜的動態性總體,是教師和全體學生積極參與下,進行集體認識的過程。教為主導,學為主體,又互為客體。啟動學生自主性學習,啟發引導學生實踐數學思維的過程,自得知識,自覓規律,自悟原理,主動發展思維和能力。

          六、學習方法

          1、讓學生在認知過程中,著重掌握元認知過程。

          2、使學生把獨立思考與多向交流相結合。

          七、教學程序及設想

         。ㄒ唬┰O置問題,創設情景。

          1、提出問題:在日常生活中,我們不僅會遇到大小不等的量,還經常會接觸到一些帶有方向的量,這些量應該如何表示呢?

          2、(在學生討論基礎上,教師引導)通過“力的圖示”的回憶,分析大小、方向、作用點三者之間的關系,著重考慮力的作用點對運動的相對性與絕對性的影響。

          設計意圖:

          1、把教材內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”、驚訝、困惑、感到棘手,緊張地沉思,期待尋找理由和論證的過程。

          2、我們知道,學習總是與一定知識背景即情境相聯系的。在實際情境下進行學習,可以使學生利用已有知識與經驗,同化和索引出當前學習的新知識。這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情境中。

         。ǘ┨峁⿲嶋H背景材料,形成假說。

          1、小船以0。5m/s的速度航行,已知一條河長xxxxm,寬150m,問小船需經過多長時間,到達對岸?

          2、到達對岸?這句話的實質意義是什么?(學生討論,期望回答:指代不明。)

          3、由此實際問題如何抽象為數學問題呢?(學生交流討論,期望回答:要確定某些量,有時除了知道其大小外,還需要了解其方向。)

          設計意圖:

          1、在稍稍超前于學生智力發展的邊界上(即思維的最鄰近發展)通過問題引領,來促成學生“數形結合”思想的形成。

          2、通過學生交流討論,把實際問題抽象成為數學問題,并賦予抽象的數學符號和表達方式。

          (三)引導探索,尋找解決方案。

          1、如何補充上面的題目呢?從已學過知識可知,必須增加“方位”要求。

          2。方位的實質是什么呢?即位移的本質是什么?期望回答:大小與方向的統一。

          3、零向量、單位向量、平行向量、相等向量、共線向量等系列化概念之間的關系是什么?(明確要領。)

          設計意圖:

          學生在教師引導下,在積累了已有探索經驗的基礎上,進行討論交流,相互評價,共同完成了“數形結合”思想上的建構。

          2、這一問題設計,試圖讓學生不“唯書”,敢于和善于質疑批判和超越書本和教師,這是創新素質的突出表現,讓學生不滿足于現狀,執著地追求。

          3、盡可能地揭示出認知思想方法的全貌,使學生從整體上把握解決問題的方法。

         。ㄋ模┛偨Y結論,強化認識。

          經過引導,學生歸納出“數形結合”的思想——“數”與“形”是一個問題的兩個方面,“形”的外表里,蘊含著“數”的本質。

          設計意圖:促進學生數學思想方法的形成,引導學生確實掌握“數形結合”的思想方法。

         。ㄎ澹┳兪窖由欤M行重構。

          教師引導:在此我們已經知道,欲解決一些抽象的數學問題,可以借助于圖形來解決,這就是向量的理論基礎。

          下面繼續研究,與向量有關的一些概念,引導學生利用模型演示進行觀察。

          概念1:長度為0的向量叫做零向量。

          概念2:長度等于一個單位長度的向量,叫做單位向量。

          概念3:方向相同或相反的非零向量叫做平行(或共線)向量。(規定:零向量與任一向量平行。)

          概念4:長度相等且方向相同的向量叫做相等向量。

          設計意圖:

          1、學生在教師引導下,在積累了已有探索經驗的基礎上進行討論交流,相互評價,共同完成了有向線段與向量兩者關系的建構。

          2、這些概念的比較可以讓學生加強對“向量”概念的理解,以便更好地“數形結合”。

          3、讓學生對教學思想方法,及其應情境達到較為純熟的認識,并將這種認識思維地貯存在大腦中,隨時提取和應用。

         。┛偨Y回授調整。

          1、知識性內容:

          例設O是正六邊形ABCDEF的中心,分別寫出圖中與向量OA、OB、OC相等的向量。

          2、對運用數學思想方法創新素質培養的小結:

          a、要善于在實際生活中,發現問題,從而提煉出相應的數學問題。發現作為一種意識,可以解釋為“探察問題的意識”;發現作為一種能力,可以解釋為“找到新東西”的能力,這是培養創造力的基本途徑。

          b、問題的解決,采用了“數形結合”的數學思想,體現了數學思想方法是解決問題的根本途徑。

          c、問題的變式探究的過程,是一個創新思維活動過程中一種多維整合過程。重組知識的過程,是一種多維整合的過程,是一個高層次的知識綜合過程,是對教材知識在更高水平上的概括和總結,有利于形成一個自我再生力強的開放的動態的知識系統,從而使得思維具有整體功能和創新能力。

          2、設計意圖:

          1、知識性內容的總結,可以把課堂教學傳授的知識,盡快轉化為學生的素質。

          2、運用數學方法創新素質的小結,能讓學生更系統,更深刻地理解數學思想方法在解題中的地位和作用,并且逐漸培養學生的良好個性品質。這是每堂課必不可少的一個重要環節。

         。ㄆ撸┎贾米鳂I。

          反饋“數形結合”的探究過程,整理知識體系,并完成習題5。1的內容。

        高中數學說課稿4

          1.教材分析

          1-1教學內容及包含的知識點

          (1)本課內容是高中數學第二冊第七章第三節《兩條直線的位置關系》的最后一個內容

          (2)包含知識點:點到直線的距離公式和兩平行線的距離公式

          1-2教材所處地位、作用和前后聯系

          本節課是兩條直線位置關系的最后一個內容,在此之前,有對兩線位置關系的定性刻畫:平行、垂直,以及對相交兩線的定量刻畫:夾角、交點。在此之后,有圓錐曲線方程,因而本節既是對前面兩線垂直、兩線交點的復習,又是為后面計算點線距離(在直線和圓錐曲線構成的組合圖形中)提供一套工具。

          可見,本課有承前啟后的作用。

          1-3教學大綱要求

          掌握點到直線的距離公式

          1-4高考大綱要求及在高考中的顯示形式

          掌握點到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構成的組合圖形為背景,判斷直線和圓錐曲線的位置或構成三角形求高,涉及絕對值,直線垂直,最小值等。

          1-5教學目標及確定依據

          教學目標

          (1)掌握點到直線的距離的概念、公式及公式的推導過程,能用公式來求點線距離和線線距離。

          (2)培養學生探究性思維方法和由特殊到一般的研究能力。

          (3)認識事物之間相互聯系、互相轉化的辯證法思想,培養學生轉化知識的能力。

          (4)滲透人文精神,既注重學生的智慧獲得,又注重學生的情感發展。

          確定依據:

          中華人民共和國教育部制定的《全日制普通高級中學數學教學大綱》(20xx年4月第一版),《基礎教育課程改革綱要(試行)》,《高考考試說明》(20xx年)

          1-6教學重點、難點、關鍵

          (1)重點:點到直線的距離公式

          確定依據:由本節在教材中的地位確定

         。2)難點:點到直線的距離公式的推導

          確定依據:根據定義進行推導,思路自然,但運算繁瑣;用等積法推導,運算較簡單,但思路不自然,學生易被動,主體性得不到體現。

          分析“嘗試性題組”解題思路可突破難點

         。3)關鍵:實現兩個轉化。一是將點線距離轉化為定點到垂足的距離;二是利用等積法將其轉化為直角三角形中三頂點的距離。

          2.教法

          2-1發現法:本節課為了培養學生探究性思維目標,在教學過程中,使老師的主導性和學生的主體性有機結合,使學生能夠愉快地自覺學習,通過學生自己練習“嘗試性題組”,引導、啟發學生分析、發現、比較、論證等,從而形成完整的數學模型。

          確定依據:

          (1)美國教育學家波利亞的教與學三原則:主動學習原則,最佳動機原則,階段漸進性原則。

          (2)事物之間相互聯系,相互轉化的辯證法思想。

          2-2教具:多媒體和黑板等傳統教具

          3.學法

          3-1發現法:豐富學生的數學活動,學生經過練習、觀察、分析、探索等步驟,自己發現解決問題的方法,比較論證后得到一般性結論,形成完整的數學模型,再運用所得理論和方法去解決問題。

          一句話:還課堂以生命力,還學生以活力。

          3-2學情:

          (1)知識能力狀況,本節為兩線位置關系的最后一個內容,在這之前學生已經系統的學習了直線方程的各種形式,有對兩線位置關系的定性認識和對兩線相交的定量認識,為本節推證公式涉及到直線方程、兩線垂直、兩線交點作好了知識儲備。同時學生對解析幾何的實質中,用坐標系溝通直線與方程的研究辦法,有了初步認識,數形結合的思想正逐漸趨于成熟。

         。2)心理特點:又見“點到直線的距離”(初中已學習定義),學生既熟悉又陌生,既困惑又好奇,探詢動機由此而生。

         。3)生活經驗:數學源于生活,生活中的點線距隨處可見,怎樣將實際問題數學化,是每個追求成長、追求發展的學生所渴求的一種研究能力。豐富的課堂數學活動能夠讓他們真正參與,體驗過程,錘煉意志,培養能力。

          3-3學具:直尺、三角板

          3. 教學程序

          時,此時又怎樣求點A到直線

          的距離呢?

          生: 定性回答

          點明課題,使學生明確學習目標。

          創設“不憤不啟,不悱不發”的學習情景。

          練習

          比較

          發現

          歸納

          討論

          的距離為d

          (1) A(2,4),

         。簒 = 3, d=_____

          (2) A(2,4),

         。簓 = 3,d=_____

          (3) A(2,4),

          :x – y = 0,d=_____

          嘗試性題組告訴學生下手不難,還負責特例檢驗,從而增強學生參與的信心。

          請三個同學上黑板板演

          師: 請這三位同學分別說說自己的解題思路。

          生: 回答

          教學機智:應沉淀為三種思路:一,根據定義轉化為定點到垂足的距離;二,利用等積法轉化為直角三角形中三個頂點之間的距離;三,利用直角三角形中的邊角關系。

          視回答的情況,老師進行肯定、修正或補充提問:“還有其他不同的思路嗎”。

          說解題思路,一是讓學生清晰有條理的表達自己的思考過程,二是其求解過程提示了證明的途徑(根據定義或畫坐標線時正好交出一個直角三角形)

          師:很好,剛才我們解決了定點到特殊直線的距離問題,那么,點P(x0,y0)到一般直線

         。篈x+By+C=0(A,B≠0)的距離又怎樣求?

          教學機智:如學生反應不大,則補充提問:上面三個題的解題思路對這個問題有啟示嗎?

          生:方案一:根據定義

          方案二:根據等積法

          方案三: ......

          設置此問,一是使學生的認知由特殊向一般轉化,發現可能的方法,二是讓學生體驗數學活動充滿著探索和創造,感受數學的生機和樂趣。

          師生一起進行比較,鎖定方案二進行推證。

          “師生共作”體現新型師生觀,且//時,又怎樣求這兩線的距離?

          生:計算得線線距離公式

          師:板書點到直線的距離公式,兩平行線間距離公式

          “沒有新知識,新知識均是舊知識的組合”,創設此問可發揮學生的創造性,增加學生的成就感。

          反思小結

          經驗共享

         。 分 鐘)

          師: 通過以上的學習,你有哪些收獲?(知識,能力,情感)。有哪些疑問?誰能答這些疑問?

          生: 討論,回答。

          對本節課用到的技能,數學思維方法等進行小結,使學生對本節知識有一個整體的認識。

          共同進步,各取所長。

          練習

         。ㄎ 分 鐘)

          P53 練習 1, 2,3

          熟練的用公式來求點線距離和線線距離。

          再度延伸

         。ㄒ 分 鐘)

          探索其他推導方法

          “帶著問題進課堂,帶著更多的問題出課堂”,讓學生真正學會學習。

          4. 教學評價

          學生完成反思性學習報告,書寫要求:

          (1) 整理知識結構

          (2) 總結所學到的基本知識,技能和數學思想方法

          (3) 總結在學習過程中的經驗,發明發現,學習障礙等,說明產生障礙的原因

          (4) 談談你對老師教法的建議和要求。

          作用:

          (1) 通過反思使學生對所學知識系統化。反思的過程實際上是學生思維內化,知識深化和認知牢固化的一個心理活動過程。

          (2) 報告的寫作本身就是一種創造性活動。

          (3) 及時了解學生學習過程中的知識缺陷,思維障礙,有利于教師了解學生對自己的教法的滿意度和效果,以便作出及時調整,及時進行補償性教學。

          5. 板書設計

          (略)

          6. 教學的反思總結

          心理歷練,得意之處,困惑之處,知識的傳承發展,如何修正完善等。

        高中數學說課稿5

          一、說教材:

          1. 地位及作用:

          “橢圓及其標準方程”是高中《解析幾何》第二章第七節內容,是本書的重點內容之一,也是歷年高考、會考的必考內容,是在學完求曲線方程的基礎上,進一步研究橢圓的特性,以完成對圓錐曲線的全面研究,為今后的學習打好基礎,因此本節內容具有承前啟后的作用。

          2. 教學目標:

          根據《教學大綱》,《考試說明》的要求,并根據教材的具體內容和學生的實際情況,確定本節課的教學目標:

         。1)知識目標:掌握橢圓的定義和標準方程,以及它們的應用。

         。2)能力目標:

         。╝)培養學生靈活應用知識的能力。

         。╞) 培養學生全面分析問題和解決問題的能力。

         。╟)培養學生快速準確的運算能力。

          (3)德育目標:培養學生數形結合思想,類比、分類討論的思想以及確立從感性到理性認識的辯證唯物主義觀點。

          3. 重點、難點和關鍵點:

          因為橢圓的定義和標準方程是解決與橢圓有關問題的重要依據,也是研究雙曲線和拋物線的基礎,因此,它是本節教材的重點;由于學生推理歸納能力較低,在推導橢圓的標準方程時涉及到根式的兩次平方,并且運算也較繁,因此它是本節課的難點;坐標系建立的好壞直接影響標準方程的推導和化簡,因此建立一個適當的直角坐標系是本節的關鍵。

          二、 說教材處理

          為了完成本節課的教學目標,突出重點、分散難點、根據教材的內容和學生的實際情況,對教材做以下的處理:

          1.學生狀況分析及對策:

          2.教材內容的組織和安排:

          本節教材的處理上按照人們認識事物的規律,遵循由淺入深,循序漸進,層層深入的原則組織和安排如下:

         。1)復習提問(2)引入新課(3)新課講解(4)反饋練習(5)歸納總結(6)布置作業

          三、 說教法和學法

          1.為了充分調動學生學習的積極性,是學生變被動學習為主動而愉快的學習,引導學生自己動手,讓學生的思維活動在教師的引導下層層展開。請學生參與課堂。加強方程推導的指導,是傳授知識與培養能力有機的溶為一體,為此,本節課采用“引導教學法”。

          2.利用電腦所畫圖形的動態演示總結規律。同時利用電腦的動態演示激發學生的學習興趣。

          四、 教學過程

          教學環節

          3.設a(-2,0),b(2,0),三角形abp周長為10,動點p軌跡方程。

          例1屬基礎,主要反饋學生掌握基本知識的程度。

          例2可強化基本技能訓練和基本知識的靈活運用。

          小結

          為使學生對本節內容有一個完整深刻的認識,教師引導學生從以下幾個方面進行小結。

          1.橢圓的定義和標準方程及其應用。

          2.橢圓標準方程中a,b,c諸關系。

          3.求橢圓方程常用方法和基本思路。

          通過小結形成知識體系,加深對本節知識的理解培養學生的歸納總結能力,增強學生學好圓錐曲線的信心。

          布置作業

         。1) 77頁——78頁 1,2,3,79頁 11

         。2) 預習下節內容

          鞏固本節所學概念,強化基本技能訓練,培養學生良好的學習習慣和品質,發現和彌補教學中的遺漏和不足。

        高中數學說課稿6

          一、說教材

          1、 教材的地位和作用

          《集合的概念》是人教版第一章的內容(中職數學)。本節課的主要內容:集合以及集合有關的概念,元素與集合間的關系。初中數學課本中已現了一些數和點的集合,如:自然數的集合、有理數的集合、不等式解的集合等,但學生并不清楚“集合”在數學中的含義,集合是一個基礎性的概念,也是也是中職數學的開篇,是我們后續學習的重要工具,如:用集合的語言表示函數的定義域、值域、方程與不等式的解集,曲線上點的集合等。通過本章節的學習,能讓學生領會到數學語言的簡潔和準確性,幫助學生學會用集合的語言描述客觀,發展學生運用數學語言交流的能力。

          2、 教學目標

         。1)知識目標:a、通過實例了解集合的含義,理解集合以及有關概念;

          b、初步體會元素與集合的“屬于”關系,掌握元素與集合關系的表示方法。

          (2)能力目標:a、讓學生感知數學知識與實際生活得密切聯系,培養學生解決實際的能力;

          b、學會借助實例分析,探究數學問題,發展學生的觀察歸納能力。

         。3)情感目標:a、通過聯系生活,提高學生學習數學的積極性,形成積極的學習態度;

          b、通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數學的理性和嚴謹。

          3、重點和難點

          重點:集合的概念,元素與集合的關系。

          難點:準確理解集合的概念。

          二、學情分析(說學情)

          對于中職生來說,學生的數學基礎相對薄弱,他們還沒具備一定的觀察、分析理解、解決實際問題的能力,在運算能力、思維能力等方面參差不齊,學生學好數學的自信心不強,學習積極性不高,有厭學情緒。

          三、說教法

          針對學生的實際情況,采用探究式教學法進行教學。首先從學生較熟悉的實例出發,提高學生的注意力和激發學生的學習興趣。在創設情境認知策略上給予適當的點撥和引導,引導學生主動思、交流、討論,提出問題。在此基礎上教師層層深入,啟發學生積極思維,逐步提升學生的數學學習能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學生的理解和掌握。

          四、學習指導(說學法)

          教學的矛盾主要方面是學生的`學,學是中心,會學是目的,因此在教學中要不斷指導學生學會學習。根據數學的特點這節課主要是教學生動腦思考、多訓練、勤鉆研的研討,這樣做增加了學生主動參與的機會,增強了參與的意識,教學生獲取知識的途徑,思考問題的方法,使學生成為教學的主體,進而才能達到預期的教學目的和效果。

          五、教學過程

          1、引入新課:

          a、創設情境,揭示本課主題,同時對集合的整體性有個初步的感性認識。

          b、介紹集合論的創始者康托爾

          2、究竟什么是集合?(實例探究)切合學生現有的認知水平, 以學生熟悉的事物(物體),以實際生活為背景進行探究, 為本課教學創造出一種自然和諧的氛圍,充分調動學生的學習熱情接待探究過程學生積極思考、交流、作答,教師針對學生的回答啟發,引導學生尋找實例中的共同特征,培養學生觀察,總結能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。

          3、集合的概念,本課的重點。結合探究中的實例,讓學生說出集合和元素各是什么?知識的呈現由抽象到具體進一步熟悉元素與集合的概念,讓學生分清實際問題中的集合和元素為后面學習兩者間的關系做好鋪墊。

          教師在這一環節做好學習指導,確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。

          4、 熟悉鞏固集合的概念通過例題,練習、幫助學生進一步熟悉和理解集合的概念。

          5、 集合的符號記法,為本節重點做好鋪墊。

          6、 從實例入行手,探索元素和集合的關系,學生能用文字語言描述,如何用數學語言描述,給出元素與集合關系符號表示,在這個環節教師適當引導學生積極主動參與到知識逐步形成過程,便于學生理解和掌握,落實本課的重點,學習指導:⑴集合元素的確定。⑵理解兩符號的含義。

          7、 思考交流本課的重要環節在課堂上給學生提供充分的活動時間和空間。通過自由舉例,能深化概念。同時還能提升學生的分析能力表達自己見解的能力。

          8、 從所舉的例子中抽象出數集的概念,并給出常見數集的記法。

          9、 學生練習:通過練習,識記常見數集的記法,同時進一步鞏固元素與集合間的關系。

          10、知識的實際應用:

          問題不難,落實課本能力目標,培養學生運用數學的意識和能力初步培養學生應用集合的眼光觀看世界。

          11、課堂小節

          以學生小節為主教師幫助為輔,鞏固所學知識,幫助學生認識到要學會梳理所學內容,要學會總結反思,使學生的認識進一步升華,培養學生的鬼納總結能力。

          六、評價

          教學評價的及時能有效調動課堂氣氛,感染學生的情緒,對課堂教學發揮著積極作用,教學過程遵重學生之間的差異培養學生應用集合的眼光看研究對象,注重過程評價與多元評價將教學評價貫穿于本堂課的每個教學環節。

          七、教學反思

          1、 通過現實生活中的實例,從特殊到一般,在具體感知基礎上得出集合的描述概念,便于學生理解接受。

          2、 啟發探究教學,營造學生的學習氛圍,培養學生自主學習,合作交流的能力。

          八、板書設計

        高中數學說課稿7

          尊敬的各位專家、評委:

          下午好!

          我的抽簽序號是____,今天我說課的課題是《_______》第__課時。 我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。

          一、教材分析

         。ㄒ唬┑匚慌c作用

          數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面數列作為一種特殊的函數與函數思想密不可分;另一方面學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。

         。ǘ⿲W情分析

          (1)學生已熟練掌握_________________。

         。2)學生的知識經驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。

          (3)學生思維活潑,積極性高,已初步形成對數學問題的合作探究能力。

         。4) 學生層次參次不齊,個體差異比較明顯。

          二、目標分析

          新課標指出“三維目標”是一個密切聯系的有機整體,應該以獲得知識與技能的過程,同時成為學會學習和正確價值觀。這要求我們在教學中以知識技能的培養為主線,透情感態度與價值觀,并把這兩者充分體現在教學過程中,新課標指出教學的主體是學生,因此目標的制定和設計必須從學生的角度出發,根據____在教材內容中的地位與作用,結合學情分析,本節課教學應實現如下教學目標:

         。ㄒ唬┙虒W目標

          (1)知識與技能

          使學生理解函數單調性的概念,初步掌握判別函數單調性的方法;。

         。2)過程與方法

          引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡單的問題;使學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。

          (3)情感態度與價值觀

          在函數單調性的學習過程中,使學生體驗數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。

          (二)重點難點

          本節課的教學重點是________________________,教學難點是_____________________。

          三、教法、學法分析

         。ㄒ唬┙谭

          基于本節課的內容特點和高二學生的年齡特征,按照臨沂市高中數學“三五四”課堂教學策略,采用探究――體驗教學法為主來完成教學,為了實現本節課的教學目標,在教法上我采取了:

          1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發學生求知欲,調動學生主體參與的積極性.

          2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念.

          3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹的推理,并順利地完成書面表達.

          (二)學法

          在學法上我重視了:

          1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。

          2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和分析解決問題的能力。

          四、教學過程分析

         。ㄒ唬┙虒W過程設計

          教學是一個教師的“導”,學生的“學”以及教學過程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發、誘導、激勵、評價等為學生的學習搭建支架,把學習的任務轉移給學生,學生就是接受任務,探究問題、完成任務。如果在教學過程中把“教與學”完美的結合也就是以“問題”為核心,通過對知識的發生、發展和運用過程的演繹、解釋和探究來組織和推動教學。

         。1)創設情境,提出問題。

          新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統目的明確的設計方式,給學生最大的思考空間,充分體現學生主體地位。

         。2)引導探究,建構概念。

          數學概念的形成來自解決實際問題和數學自身發展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經驗和已有的知識基礎出發,經歷“數學化”、“再創造”的活動過程.

          (3)自我嘗試,初步應用。

          有效的數學學習過程,不能單純的模仿與記憶,數學思想的領悟和學習過程更是如此。讓學生在解題過程中親身經歷和實踐體驗,師生互動學習,生生合作交流,共同探究.

         。4)當堂訓練,鞏固深化。

          通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。

          (5)小結歸納,回顧反思。

          小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。我設計了三個問題:(1)通過本節課的學習,你學到了哪些知識?(2)通過本節課的學習,你最大的體驗是什么?(3)通過本節課的學習,你掌握了哪些技能?

         。ǘ┳鳂I設計

          作業分為必做題和選做題,必做題對本節課學生知識水平的反饋,選做題是對本

          節課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展、合作探究的學習氛圍的形成.

          我設計了以下作業:

         。1)必做題

         。2)選做題

          (三)板書設計

          板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。

          五、評價分析

          學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對____是否有一個完整的集訓,并進行及時的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。 謝謝!

        高中數學說課稿8

          教材地位及作用

          本節課是高中數學3(必修)第三章概率的第二節古典概型的第一課時,是在隨機事件的概率之后,幾何概型之前,尚未學習排列組合的情況下教學的。古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。

          學好古典概型可以為其它概率的學習奠定基礎,同時有利于理解概率的概念,有利于計算一些事件的概率,有利于解釋生活中的一些問題。

          教學重點

          理解古典概型的概念及利用古典概型求解隨機事件的概率。

          根據本節課的地位和作用以及新課程標準的具體要求,制訂教學重點。

          教學難點

          如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數和試驗中基本事件的總數。

          根據本節課的內容,即尚未學習排列組合,以及學生的心理特點和認知水平,制定了教學難點。

          教學目標

          1.知識與技能

         。1)理解古典概型及其概率計算公式,

         。2)會用列舉法計算一些隨機事件所含的基本事件數及事件發生的概率。

          2.過程與方法

          根據本節課的內容和學生的實際水平,通過模擬試驗讓學生理解古典概型的特征:試驗結果的有限性和每一個試驗結果出現的等可能性,觀察類比各個試驗,歸納總結出古典概型的概率計算公式,體現了化歸的重要思想,掌握列舉法,學會運用數形結合、分類討論的思想解決概率的計算問題。

          3.情感態度與價值觀

          概率教學的核心問題是讓學生了解隨機現象與概率的意義,加強與實際生活的聯系,以科學的態度評價身邊的一些隨機現象。適當地增加學生合作學習交流的機會,盡量地讓學生自己舉出生活和學習中與古典概型有關的實例。使得學生在體會概率意義的同時,感受與他人合作的重要性以及初步形成實事求是地科學態度和鍥而不舍的求學精神。

          根據新課程標準,并結合學生心理發展的需求,以及人格、情感、價值觀的具體要求制訂而成。這對激發學生學好數學概念,養成數學習慣,感受數學思想,提高數學能力起到了積極的作用。

          教學過程分析

          一,提出問題引入新課

          在課前,教師布置任務,以數學小組為單位,完成下面兩個模擬試驗:

          試驗一:拋擲一枚質地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個數學小組至少完成20次(最好是整十數),最后由科代表匯總;

          試驗二:拋擲一枚質地均勻的骰子,分別記錄"1點"、"2點"、"3點"、"4點"、"5點"和"6點"的次數,要求每個數學小組至少完成60次(最好是整十數),最后由科代表匯總。

          在課上,學生展示模擬試驗的操作方法和試驗結果,并與同學交流活動感受。

          教師最后匯總方法、結果和感受,并提出問題?

          1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?

          不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結果是頻率,而不是概率。

          2.根據以前的學習,上述兩個模擬試驗的每個結果之間都有什么特點?

          學生展示模擬試驗的操作方法和試驗結果,并與同學交流活動感受,教師最后匯總方法、結果和感受,并提出問題。

          通過課前的模擬實驗的展示,讓學生感受與他人合作的重要性,培養學生運用數學語言的能力。隨著新問題的提出,激發了學生的求知欲望,通過觀察對比,培養了學生發現問題的能力。

          二,思考交流形成概念

          在試驗一中隨機事件只有兩個,即"正面朝上"和"反面朝上",并且他們都是互斥的,由于硬幣質地是均勻的,因此出現兩種隨機事件的可能性相等,即它們的概率都是;

          在試驗二中隨機事件有六個,即"1點"、"2點"、"3點"、"4點"、"5點"和"6點",并且他們都是互斥的,由于骰子質地是均勻的,因此出現六種隨機事件的可能性相等,即它們的概率都是。

          我們把上述試驗中的隨機事件稱為基本事件,它是試驗的每一個可能結果。

          基本事件有如下的兩個特點:

         。1)任何兩個基本事件是互斥的;

          (2)任何事件(除不可能事件)都可以表示成基本事件的和。

          特點(2)的理解:在試驗一中,必然事件由基本事件"正面朝上"和"反面朝上"組成;在試驗二中,隨機事件"出現偶數點"可以由基本事件"2點"、"4點"和"6點"共同組成。

          學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關特點加以說明,加深新概念的理解。

          讓學生從問題的相同點和不同點中找出研究對象的對立統一面,這能培養學生分析問題的能力,同時也教會學生運用對立統一的辯證唯物主義觀點來分析問題的一種方法。

          三,思考交流形成概念

          例1從字母中任意取出兩個不同字母的試驗中,有哪些基本事件?

          分析:為了解基本事件,我們可以按照字典排序的順序,把所有可能的結果都列出來。利用樹狀圖可以將它們之間的關系列出來。

          我們一般用列舉法列出所有基本事件的結果,畫樹狀圖是列舉法的基本方法,一般分布完成的結果(兩步以上)可以用樹狀圖進行列舉。

         。錉顖D)

          解:所求的基本事件共有6個:

          ,,,

          ,,

          觀察對比,發現兩個模擬試驗和例1的共同特點:

          試驗一中所有可能出現的基本事件有"正面朝上"和"反面朝上"2個,并且每個基本事件出現的可能性相等,都是;

          試驗二中所有可能出現的基本事件有"1點"、"2點"、"3點"、"4點"、"5點"和"6點"6個,并且每個基本事件出現的可能性相等,都是;

          例1中所有可能出現的基本事件有"A"、"B"、"C"、"D"、"E"和"F"6個,并且每個基本事件出現的可能性相等,都是;

          經概括總結后得到:

          1,試驗中所有可能出現的基本事件只有有限個;(有限性)

          2,每個基本事件出現的可能性相等。(等可能性)

          我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型。

          思考交流:

          (1)向一個圓面內隨機地投射一個點,如果該點落在圓內任意一點都是等可能的,你認為這是古典概型嗎?為什么?

          答:不是古典概型,因為試驗的所有可能結果是圓面內所有的點,試驗的所有可能結果數是無限的,雖然每一個試驗結果出現的"可能性相同",但這個試驗不滿足古典概型的第一個條件。

         。2)如圖,某同學隨機地向一靶心進行射擊,這一試驗的結果只有有限個:命中10環、命中9環。。。。。。命中5環和不中環。你認為這是古典概型嗎?為什么?

          答:不是古典概型,因為試驗的所有可能結果只有7個,而命中10環、命中9環。。。。。。命中5環和不中環的出現不是等可能的,即不滿足古典概型的第二個條件。

          先讓學生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優點。讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結得到的結論,教師最后補充說明。學生互相交流,回答補充,教師歸納。將數形結合和分類討論的思想滲透到具體問題中來。由于沒有學習排列組合,因此用列舉法列舉基本事件的個數,不僅能讓學生直觀的感受到對象的總數,而且還能使學生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數這一難點。培養運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現了數學的化歸思想。啟發誘導的同時,訓練了學生觀察和概括歸納的能力。通過用表格列出相同和不同點,能讓學生很好的理解古典概型。從而突出了古典概型這一重點。

          兩個問題的設計是為了讓學生更加準確的把握古典概型的兩個特點。突破了如何判斷一個試驗是否是古典概型這一教學難點。

          四,觀察分析推導方程

          問題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?

          分析:

          實驗一中,出現正面朝上的概率與反面朝上的概率相等,即

          P("正面朝上")=P("反面朝上")

          由概率的加法公式,得

          P("正面朝上")+P("反面朝上")=P(必然事件)=1

          因此P("正面朝上")=P("反面朝上")=

          即試驗二中,出現各個點的概率相等,即

          P("1點")=P("2點")=P("3點")

         。絇("4點")=P("5點")=P("6點")

          反復利用概率的加法公式,我們有

          P("1點")+P("2點")+P("3點")+P("4點")+P("5點")+P("6點")=P(必然事件)=1

          所以P("1點")=P("2點")=P("3點")

         。絇("4點")=P("5點")=P("6點")=

          進一步地,利用加法公式還可以計算這個試驗中任何一個事件的概率,例如,

          P("出現偶數點")=P("2點")+P("4點")+P("6點")=++==

          即根據上述兩則模擬試驗,可以概括總結出,古典概型計算任何事件的概率計算公式為:

          教師提出問題,引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結果,發現其中的聯系。

          鼓勵學生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學生感受數學化歸思想的優越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點。

          提問:

          (1)在例1的實驗中,出現字母"d"的概率是多少?

          出現字母"d"的概率為:

          提問:

         。2)在使用古典概型的概率公式時,應該注意什么?

          歸納:

          在使用古典概型的概率公式時,應該注意:

          (1)要判斷該概率模型是不是古典概型;

          (2)要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。除了畫樹狀圖,還有什么方法求基本事件的個數呢?

          教師提問,學生回答,加深對古典概型的概率計算公式的理解。

          深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關鍵。

          四,例題分析推廣應用

          例2單選題是標準化考試中常用的題型,一般是從A,B,C,D四個選項中選擇一個正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?

          分析:

          解決這個問題的關鍵,即討論這個問題什么情況下可以看成古典概型。如果考生掌握或者掌握了部分考察內容,這都不滿足古典概型的第2個條件——等可能性,因此,只有在假定考生不會做,隨機地選擇了一個答案的情況下,才可以化為古典概型。

          解:

          這是一個古典概型,因為試驗的可能結果只有4個:選擇A、選擇B、選擇C、選擇D,即基本事件共有4個,考生隨機地選擇一個答案是選擇A,B,C,D的可能性是相等的。從而由古典概型的概率計算公式得:

          課后思考:

         。1)在標準化考試中既有單選題又有多選題,多選題是從A,B,C,D四個選項中選出所有正確的答案,同學們可能有一種感覺,如果不知道正確答案,多選題更難猜對,這是為什么?

         。2)假設有20道單選題,如果有一個考生答對了17道題,他是隨機選擇的可能性大,還是他掌握了一定知識的可能性大?

          學生先思考再回答,教師對學生沒有注意到的關鍵點加以說明。

          讓學生明確決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。

          鞏固學生對已學知識的掌握。

          例3同時擲兩個骰子,計算:

          (1)一共有多少種不同的結果?

         。2)其中向上的點數之和是5的結果有多少種?

         。3)向上的點數之和是5的概率是多少?

          解:(1)擲一個骰子的結果有6種,我們把兩個骰子標上記號1,2以便區分,由于1號骰子的結果都可以與2號骰子的任意一個結果配對,我們用一個"有序實數對"來表示組成同時擲兩個骰子的一個結果(如表),其中第一個數表示1號骰子的結果,第二個數表示2號骰子的結果。(可由列表法得到)

          由表中可知同時擲兩個骰子的結果共有36種。

         。2)在上面的結果中,向上的點數之和為5的結果有4種,分別為:

         。1,4),(2,3),(3,2),(4,1)

          (3)由于所有36種結果是等可能的,其中向上點數之和為5的結果(記為事件A)有4種,因此,由古典概型的概率計算公式可得

          先給出問題,再讓學生完成,然后引導學生分析問題,發現解答中存在的問題。

          引導學生用列表來列舉試驗中的基本事件的總數。

          利用列表數形結合和分類討論,既能形象直觀地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解,和用列舉法來計算一些隨機事件所含基本事件的個數及事件發生的概率。

          培養學生運用數形結合的思想,提高發現問題、分析問題、解決問題的能力,增強學生數學思維情趣,形成學習數學知識的積極態度。

          五,探究思考鞏固深

          化問題思考:為什么要把兩個骰子標上記號?如果不標記號會出現什么情況?你能解釋其中的原因嗎?

          如果不標上記號,類似于(1,2)和(2,1)的結果將沒有區別。這時,所有可能的結果將是:

         。1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21種,和是5的結果有2個,它們是(1,4)(2,3),所求的概率為

          這就需要我們考察兩種解法是否滿足古典概型的要求了。

          可以通過展示兩個不同的骰子所拋擲出來的點,感受第二種方法構造的基本事件不是等可能事件,另外還可以利用Excel展示第二種方法中構造的21個基本事件不是等可能事件。從而加深印象,鞏固知識。

          要求學生觀察對比兩種結果,找出問題產生的原因。

          通過觀察對比,發現兩種結果不同的根本原因是——研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現了學生的主體地位,逐漸養成自主探究能力。

          六,總結概括加深理解

          1.我們將具有

         。1)試驗中所有可能出現的基本事件只有有限個;(有限性)

         。2)每個基本事件出現的可能性相等。(等可能性)

          這樣兩個特點的概率模型稱為古典概率概型,簡稱古典概型。

          2.古典概型計算任何事件的概率計算公式

          3.求某個隨機事件A包含的基本事件的個數和實驗中基本事件的總數的常用方法是列舉法(畫樹狀圖和列表),應做到不重不漏。

          學生小結歸納,不足的地方老師補充說明。

          使學生對本節課的知識有一個系統全面的認識,并把學過的相關知識有機地串聯起來,便于記憶和應用,也進一步升華了這節課所要表達的本質思想,讓學生的認知更上一層。

          七,布置作業

          P123練習1、2題

          學生課后自主完成。

          進一步讓學生掌握古典概型及其概率公式,并能夠學以致用,加深對本節課的理解。

          八,板書設計教法與學法分析教法分析

          根據本節課的特點,采用引導發現和歸納概括相結合的教學方法,通過提出問題、思考問題、解決問題等教學過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發學生的學習興趣,調動學生的主體能動性,讓每一個學生充分地參與到學習活動中來。

          學法分析

          學生在教師創設的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結合,體現了學生的主體地位,培養了學生由具體到抽象,由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。

          評價分析評價設計

          本節課的教學通過提出問題,引導學生發現問題,經歷思考交流概括歸納后得出古典概型的概念,由兩個問題的提出進一步加深對古典概型的兩個特點的理解;再通過學生觀察類比推導出古典概型的概率計算公式。這一過程能夠培養學生發現問題、分析問題、解決問題的能力。

          在解決概率的計算上,教師鼓勵學生嘗試列表和畫出樹狀圖,讓學生感受求基本事件個數的一般方法,從而化解由于沒有學習排列組合而學習概率這一教學困惑。整個教學設計的順利實施,達到了教師的教學目標。

        高中數學說課稿9

          一.教材分析:集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。

          二.目標分析:

          教學重點.難點

          重點:集合的含義與表示方法.

          難點:表示法的恰當選擇.

          教學目標

          l.知識與技能

          (1)通過實例,了解集合的含義,體會元素與集合的屬于關系;

          (2)知道常用數集及其專用記號;

          (3)了解集合中元素的確定性.互異性.無序性;

          (4)會用集合語言表示有關數學對象;

          2.過程與方法

          (1)讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.

          (2)讓學生歸納整理本節所學知識.

          3.情感.態度與價值觀

          使學生感受到學習集合的必要性,增強學習的積極性.

          三.教法分析

          1.教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節課的教學目標.

          2.教學手段:在教學中使用投影儀來輔助教學.

          四.過程分析

          (一)創設情景,揭示課題

          1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現在的班級。

          (2)問題:像"家庭"、"學校"、"班級"等,有什么共同特征?

          引導學生互相交流.與此同時,教師對學生的活動給予評價.

          2.活動:(1)列舉生活中的集合的例子;

          (2)分析、概括各實例的共同特征

          由此引出這節要學的內容。

          設計意圖:既激發了學生濃厚的學習興趣,又為新知作好鋪墊

         。ǘ┭刑叫轮嫺拍

          1.教師利用多媒體設備向學生投影出下面7個實例:

          (1)1-20以內的所有質數;

          (2)我國古代的四大發明;

          (3)所有的安理會常任理事國;

          (4)所有的正方形;

          (5)海南省在xxxx年9月之前建成的所有立交橋;

          (6)到一個角的兩邊距離相等的所有的點;

          (7)國興中學xxxx年9月入學的高一學生的全體.

          2.教師組織學生分組討論:這7個實例的共同特征是什么?

          3.每個小組選出--位同學發表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義.

          一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.

          4.教師指出:集合常用大寫字母A,B,c,D,...表示,元素常用小寫字母...表示.

          設計意圖:通過實例讓學生感受集合的概念,激發學習的興趣,培養學生樂于求索的精神

          (三)質疑答辯,發展思維

          1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等.

          2.教師組織引導學生思考以下問題:

          判斷以下元素的全體是否組成集合,并說明理由:

          (1)大于3小于11的偶數;

          (2)我國的小河流.

          讓學生充分發表自己的建解.

          3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.

          4.教師提出問題,讓學生思考

          (1)如果用A表示高-(3)班全體學生組成的集合,用表示高一(3)班的一位同學,是高一(4)班的一位同學,那么與集合A分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于.[來源:Z,xx,k.com]

          如果是集合A的元素,就說屬于集合A,記作.

          如果不是集合A的元素,就說不屬于集合A,記作.

          (2)如果用A表示"所有的安理會常任理事國"組成的集合,則中國.日本與集合A的關系分別是什么?請用數學符號分別表示.

          (3)讓學生完成教材第6頁練習第1題.

          5.教師引導學生回憶數集擴充過程,然后閱讀教材中的相交內容,寫出常用數集的記號.并讓學生完成習題1.1A組第1題.

          6.教師引導學生閱讀教材中的相關內容,并思考.討論下列問題:

          (1)要表示一個集合共有幾種方式?

          (2)試比較自然語言.列舉法和描述法在表示集合時,各自有什么特點?適用的對象是什么?

          (3)如何根據問題選擇適當的集合表示法?

          使學生弄清楚三種表示方式的優缺點和體會它們存在的必要性和適用對象。

          設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優缺點,從而突破難點。

          (四)鞏固深化,反饋矯正

          教師投影學習:

          (1)用自然語言描述集合{1,3,5,7,9};

          (2)用例舉法表示集合

          (3)試選擇適當的方法表示下列集合:教材第6頁練習第2題.

          設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象

          (五)歸納小結,布置作業[來源:Zxxk.com]

          小結:在師生互動中,讓學生了解或體會下例問題:

          1.本節課我們學習了哪些知識內容?

          2.你認為學習集合有什么意義?

          3.選擇集合的表示法時應注意些什么?

          設計意圖:通過回顧,對概念的發生與發展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。

          作業:

          1.課后書面作業:第13頁習題1.1A組第4題.

          2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種呢?如何表示?請同學們通過預習教材.

          五.板書分析

          PPT

          集合的含義與表示

          定義例1

          集合×××××××

          ××××××××××××××

          元素×××××××

          ×××××××例2

          元素與集合的關系×××××××

          ××××××××××××××

          作業××××××××××××××

        高中數學說課稿10

          教學目標

          A、知識目標:

          掌握等差數列前n項和公式的推導方法;掌握公式的運用。

          B、能力目標:

          (1)通過公式的探索、發現,在知識發生、發展以及形成過程中培養學生觀察、聯想、歸納、分析、綜合和邏輯推理的能力。

         。2)利用以退求進的思維策略,遵循從特殊到一般的認知規律,讓學生在實踐中通過觀察、嘗試、分析、類比的方法導出等差數列的求和公式,培養學生類比思維能力。

         。3)通過對公式從不同角度、不同側面的剖析,培養學生思維的靈活性,提高學生分析問題和解決問題的能力。

          C、情感目標:(數學文化價值)

          (1)公式的發現反映了普遍性寓于特殊性之中,從而使學生受到辯證唯物主義思想的熏陶。

          (2)通過公式的運用,樹立學生"大眾教學"的思想意識。

          (3)通過生動具體的現實問題,令人著迷的數學史,激發學生探究的興趣和欲望,樹立學生求真的勇氣和自信心,增強學生學好數學的心理體驗,產生熱愛數學的情感。

          教學重點:

          等差數列前n項和的公式。

          教學難點:

          等差數列前n項和的公式的靈活運用。

          教學方法

          啟發、討論、引導式。

          教具:

          現代教育多媒體技術。

          教學過程

          一、創設情景,導入新課。

          師:上幾節,我們已經掌握了等差數列的概念、通項公式及其有關性質,今天要進一步研究等差數列的前n項和公式。提起數列求和,我們自然會想到德國偉大的數學家高斯"神速求和"的故事,小高斯上小學四年級時,一次教師布置了一道數學習題:"把從1到100的自然數加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計算出來的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀察學生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。

          例1,計算:1+2+3+4+5+6+7+8+9+10。

          這道題除了累加計算以外,還有沒有其他有趣的解法呢?小組討論后,讓學生自行發言解答。

          生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個11,得到55。

          生2:可設S=1+2+3+4+5+6+7+8+9+10,根據加法交換律,又可寫成 S=10+9+8+7+6+5+4+3+2+1。

          上面兩式相加得2S=11+10+。。。。。。+11=10×11=110

          10個

          所以我們得到S=55,

          即1+2+3+4+5+6+7+8+9+10=55

          師:高斯神速計算出1到100所有自然數的各的方法,和上述兩位同學的方法相類似。

          理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50個101,所以1+2+3+。。。。。。+100=50×101=5050。請同學們想一下,上面的方法用到等差數列的哪一個性質呢?

          生3:數列{an}是等差數列,若m+n=p+q,則am+an=ap+aq。

          二、教授新課(嘗試推導)

          師:如果已知等差數列的首項a1,項數為n,第n項an,根據等差數列的性質,如何來導出它的前n項和Sn計算公式呢?根據上面的例子同學們自己完成推導,并請一位學生板演。

          生4:Sn=a1+a2+。。。。。。an—1+an也可寫成

          Sn=an+an—1+。。。。。。a2+a1

          兩式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)

          n個

          =n(a1+an)

          所以Sn=(I)

          師:好!如果已知等差數列的首項為a1,公差為d,項數為n,則an=a1+(n—1)d代入公式(1)得

          Sn=na1+ d(II)

          上面(I)、(II)兩個式子稱為等差數列的前n項和公式。公式(I)是基本的,我們可以發現,它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數列的首項a1,下底是第n項an,高是項數n。引導學生總結:這些公式中出現了幾個量?(a1,d,n,an,Sn),它們由哪幾個關系聯系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個可自由變化?(三個)從而了解到:只要知道其中任意三個就可以求另外兩個了。下面我們舉例說明公式(I)和(II)的一些應用。

          三、公式的應用(通過實例演練,形成技能)。

          1、直接代公式(讓學生迅速熟悉公式,即用基本量例2、計算:

         。1)1+2+3+。。。。。。+n

          (2)1+3+5+。。。。。。+(2n—1)

          (3)2+4+6+。。。。。。+2n

         。4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n

          請同學們先完成(1)—(3),并請一位同學回答。

          生5:直接利用等差數列求和公式(I),得

         。1)1+2+3+。。。。。。+n=

         。2)1+3+5+。。。。。。+(2n—1)=

         。3)2+4+6+。。。。。。+2n==n(n+1)

          師:第(4)小題數列共有幾項?是否為等差數列?能否直接運用Sn公式求解?若不能,那應如何解答?小組討論后,讓學生發言解答。

          生6:(4)中的數列共有2n項,不是等差數列,但把正項和負項分開,可看成兩個等差數列,所以

          原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)

          =n2—n(n+1)=—n

          生7:上題雖然不是等差數列,但有一個規律,兩項結合都為—1,故可得另一解法:

          原式=—1—1—。。。。。。—1=—n

          n個

          師:很好!在解題時我們應仔細觀察,尋找規律,往往會尋找到好的方法。注意在運用Sn公式時,要看清等差數列的項數,否則會引起錯解。

          例3、(1)數列{an}是公差d=—2的等差數列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

          生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

          又∵d=—2,∴a1=6

          ∴S12=12 a1+66×(—2)=—60

          生9:(2)由a1+a2+a3=12,a1+d=4

          a8+a9+a10=75,a1+8d=25

          解得a1=1,d=3 ∴S10=10a1+=145

          師:通過上面例題我們掌握了等差數列前n項和的公式。在Sn公式有5個變量。已知三個變量,可利用構造方程或方程組求另外兩個變量(知三求二),請同學們根據例3自己編題,作為本節的課外練習題,以便下節課交流。

          師:(繼續引導學生,將第(2)小題改編)

          ①數列{an}等差數列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

          ②若此題不求a1,d而只求S10時,是否一定非來求得a1,d不可呢?引導學生運用等差數列性質,用整體思想考慮求a1+a10的值。

          2、用整體觀點認識Sn公式。

          例4,在等差數列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發學生解)

          師:來看第(1)小題,寫出的計算公式S16==8(a1+a6)與已知相比較,你發現了什么?

          生10:根據等差數列的性質,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

          師:對!(簡單小結)這個題目根據已知等式是不能直接求出a1,a16和d的,但由等差數列的性質可求a1與an的和,于是這個問題就得到解決。這是整體思想在解數學問題的體現。

          師:由于時間關系,我們對等差數列前n項和公式Sn的運用一一剖析,引導學生觀察當d≠0時,Sn是n的二次函數,那么從二次(或一次)的函數的觀點如何來認識Sn公式后,這留給同學們課外繼續思考。

          最后請大家課外思考Sn公式(1)的逆命題:

          已知數列{an}的前n項和為Sn,若對于所有自然數n,都有Sn=。數列{an}是否為等差數列,并說明理由。

          四、小結與作業。

          師:接下來請同學們一起來小結本節課所講的內容。

          生11:1、用倒序相加法推導等差數列前n項和公式。

          2、用所推導的兩個公式解決有關例題,熟悉對Sn公式的運用。

          生12:1、運用Sn公式要注意此等差數列的項數n的值。

          2、具體用Sn公式時,要根據已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。

          3、當已知條件不足以求此項a1和公差d時,要認真觀察,靈活應用等差數列的有關性質,看能否用整體思想的方法求a1+an的值。

          師:通過以上幾例,說明在解題中靈活應用所學性質,要糾正那種不明理由盲目套用公式的學習方法。同時希望大家在學習中做一個有心人,去發現更多的性質,主動積極地去學習。

          本節所滲透的數學方法;觀察、嘗試、分析、歸納、類比、特定系數等。

          數學思想:類比思想、整體思想、方程思想、函數思想等。

          作業:P49:13、14、15、17

        高中數學說課稿11

          各位評委老師好:今天我說課的題目是

          是必修章第節的內容,我將以新課程標準的理念指導本節課的教學,從教材分析,教法學法,教學過程,教學評價四個方面加以說明。

          一、 教材分析

          是在學習了基礎上進一步研究 并為后面學習 做準備,在整個

          高中數學中起著承上啟下的作用,因此本節內容十分重要。

          根據新課標要求和學生實際水平我制定以下教學目標

          1、 知識能力目標:使學生理解掌握

          2、 過程方法目標:通過觀察歸納抽象概括使學生構建領悟 數學思想,培養 能力

          3、 情感態度價值觀目標:通過學習體驗數學的科學價值和應用價值,培養善于

          觀察勇于思考的學習習慣和嚴謹 的科學態度

          根據教學目標、本節特點和學生實際情況本節重點是 ,由于學生對 缺少感性認識,所以本節課的重點是

          二、教法學法

          根據教師主導地位和學生主體地位相統一的規律,我采用引導發現法為本節課的主要教學方法并借助多媒體為輔助手段。在教師點撥下,學生自主探索、合作交流來尋求解決問題的方法。

          三、 教學過程

          四、 教學程序及設想

          1、由……引入:

          把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實際情況下進行學習,可以使學生利用已有知識與經驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。

          對于本題:……

          2、由實例得出本課新的知識點是:……

          3、講解例題。

          我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于發展學生的思維能力。在題中:

          4、能力訓練。

          課后練習……

          使學生能鞏固羨慕自覺運用所學知識與解題思想方法。

          5、總結結論,強化認識。

          知識性內容的小結,可把課堂教學傳授的知識盡快化為學生的素質;數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐漸培養學生的良好的個性品質目標。

          6、變式延伸,進行重構。

          重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯、累積、加工,從而達到舉一反三的效果。

          五、教學評價

          學生學習的學習結果評價當然重要,但是更重要的是學生學習的過程評價,教師應

          當高度重視學生學習過程中的參與度、自信心、團隊精神合作意識數學能力的發現,以及學習的興趣和成就感。

        高中數學說課稿12

          各位老師:

          大家好!我叫周婷婷,來自湖南科技大學。我說課的題目是《算法的概念》,內容選自于新課程人教A版必修3第一章第一節,課時安排為兩個課時,本節課內容為第一課時。下面我將從教材分析、教學目標分析、教學方法分析、學情分析、教學過程分析等五大方面來闡述我對這節課的分析和設計:

          一、教材分析

          1.教材所處的地位和作用

          現代社會是一個信息技術發展很快的社會,算法進入高中數學正是反映了時代的需要,它是當今社會必備的基礎知識,算法的學習是使用計算機處理問題前的一個必要的步驟,它可以讓學生們知道如何利用現代技術解決問題。又由于算法的具體實現上可以和信息技術相結合。因此,算法的學習十分有利于提高學生的邏輯思維能力,培養學生的理性精神和實踐能力。

          2.教學的重點和難點

          重點:初步理解算法的定義,體會算法思想,能夠用自然語言描述算法難點:把自然語言轉化為算法語言。

          二、教學目標分析

          1.知識目標:了解算法的含義,體會算法的思想;能夠用自然語言描述解決具體問題的算法;理解正確的算法應滿足的要求。

          2.能力目標:讓學生感悟人們認識事物的一般規律:由具體到抽象,再有抽象到具體,培養學生的觀察能力,表達能力和邏輯思維能力。

          3.情感目標:對計算機的算法語言有一個基本的了解,明確算法的要求,認識到計算機是人類征服自然的一有力工具,進一步提高探索、認識世界的能力。

          三、教學方法分析

          采用"問題探究式"教學法,以多媒體為輔助手段,讓學生主動發現問題、分析問題、解決問題,培養學生的探究論證、邏輯思維能力。

          四、學情分析

          算法這部分的使用性很強,與日常生活聯系緊密,雖然是新引入的章節,但很容易激發學生的學習興趣。在教師的引導下,通過多媒體輔助教學,學生比較容易掌握本節課的內容。

          五、教學過程分析

          1.創設情景:我首先向學生們展示章頭圖,介紹圖中的后景是取自宋朝數學家朱世杰的數學作品《四元玉鑒》,告訴學生們章頭圖正是體現了中國古代數學與現代計算機科學的聯系,它們的基礎都是"算法".

          「設計意圖」是為了充分挖掘章頭圖的教學價值,體現

          1)算法概念的由來;

          2)我們將要學習的算法與計算機有關;

          3)展示中國古代數學的成就;

          4)激發學生學習算法的興趣。從而順其自然的過渡到本節課要討論的話題。(約4分鐘)

          2.引入新課:在這一環節我首先和學生們一起回顧如何解二元一次方程組,并引導他們歸納二元一次方程組的求解步驟,從而讓學生經歷算法分析的基本過程,培養思維的條理性,引導學生關注更具一般性解法,形成解法向算法過渡的準備,為建立算法概念打下基礎。緊接著在此基礎上進一步復習回顧解一般的二元一次方程組的步驟,引導學生分析解題過程的結構,寫出求一般的二元一次方程組的解的算法,并把它編成程序,讓學生輸入數據,體驗計算機直接給出方程組的解。目的是讓學生明白算法是用來解決某一類問題的,從而提高學生對算法的普遍適用性的認識,為建立算法的概念做好鋪墊。

          之后,我就向學生們提出問題:到底什么是算法?如何用語言來表達算法的涵義?這里讓學生們根據剛剛的探索交流、思考并回答,然后老師進行歸納,得出算法的基本概念,并幫助學生認識算法的概念,指出有窮性,確定性,可行性。這樣可以讓學生們真正參與到算法概念的形成過程中來,體會算法思想。(約8分鐘)

          3.例題講解:在這一環節我安排了兩道例題,以幫助學生們能更好地理解算法的基本概念,并應用到實際解決問題中去,而不只是單純的對數學思想的領悟。

          這兩道例題均選自課本的例1和例2.

          例1是讓我們設定一個程序以判斷一個數是否為質數。質數是我們之前已經學習的內容,為了能更順利地完成解題過程,這里有必要引導學生們回顧一下質數應滿足的條件,然后再根據這個來探索解題步驟。通過例1讓學生認識到求解結構中存在"重復".為導出一般問題的算法創造條件,也為學習算法的自然語言表示提供前提。告訴學生們本算法就是用自然語言的形式描述的。并且設計算法一定要做到以下要求:

         。1)寫出的算法必須能解決一類問題,并且能夠重復使用。

          (2)要使算法盡量簡單、步驟盡量少。

         。3)要保證算法正確,且計算機能夠執行。

          在例1的基礎上我們繼續研究例2,例2是要求我們設計一個利用二分法來求解方程的近似根的程序。我們首先要對算法作分析,回顧用二分法求解方程近似根的過程,然后設計出解題步驟。二分法是算法中的經典問題,具有明顯的順序和可操作的特點。因此通過例2可以讓學生進一步了解算法的邏輯結構,領會算法的思想,體會算法的的特征。同時也可以鞏固用自然語言描述算法,提高用自然語言描述算法的表達水平。另外,借助例題加強學生對算法概念的理解,體會算法具有程序性、有限性、構造性、精確性、指向性的特點,算法以問題為載體,泛泛而談沒有意義。(約20分鐘)

          4.課堂小結:

          (1)算法的概念和算法的基本特征

         。2)算法的描述方法,算法可以用自然語言描述。

          (3)能利用算法的思想和方法解決實際問題,并能寫出一此簡單問題的算法課堂小結是一堂課內容的概括和總結,有利于學生把握本節課的重點,對所學知識有一個系統整體的認識。(約6分鐘)

          5.布置作業:課本練習1、2題

          課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。對作業實施分層設置,分必做和選做,利于拓展學生的自主發展的空間。

        高中數學說課稿13

          一、教材分析

          1、教材所處的地位和作用

          奇偶性是人教A版第一章集合與函數概念的第3節函數的基本性質的第2小節。

          奇偶性是函數的一條重要性質,教材從學生熟悉的 及入手,從特殊到一般,從具體到抽象,注重信息技術的應用,比較系統地介紹了函數的奇偶性。從知識結構看,它既是函數概念的拓展和深化,又是后續研究指數函數、對數函數、冪函數、三角函數的基礎。因此,本節課起著承上啟下的重要作用。

          2、學情分析

          從學生的認知基礎看,學生在初中已經學習了軸對稱圖形和中心對稱圖形,并且有了一定數量的簡單函數的儲備。同時,剛剛學習了函數單調性,已經積累了研究函數的基本方法與初步經驗。

          從學生的思維發展看,高一學生思維能力正在由形象經驗型向抽象理論型轉變,能夠用假設、推理來思考和解決問題、

          3、教學目標

          基于以上對教材和學生的分析,以及新課標理念,我設計了這樣的教學目標:

          【知識與技能】

          1、能判斷一些簡單函數的奇偶性。

          2、能運用函數奇偶性的代數特征和幾何意義解決一些簡單的問題。

          【過程與方法】

          經歷奇偶性概念的形成過程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。

          【情感、態度與價值觀】

          通過自主探索,體會數形結合的思想,感受數學的對稱美。

          從課堂反應看,基本上達到了預期效果。

          4、教學重點和難點

          重點:函數奇偶性的概念和幾何意義。

          幾年的教學實踐證明,雖然函數奇偶性這一節知識點并不是很難理解,但知識點掌握不全面的學生容易出現下面的錯誤。他們往往流于表面形式,只根據奇偶性的定義檢驗成立即可,而忽視了考慮函數定義域的問題。因此,在介紹奇、偶函數的定義時,一定要揭示定義的隱含條件,從正反兩方面講清定義的內涵和外延。因此,我把函數的奇偶性概念設計為本節課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強本節課重點問題的講解。

          難點:奇偶性概念的數學化提煉過程。

          由于,學生看待問題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構奇偶性的概念造成了一定的困難。因此我把奇偶性概念的數學化提煉過程設計為本節課的難點。

          二、教法與學法分析

          1、教法

          根據本節教材內容和編排特點,為了更有效地突出重點,突破難點,按照學生的認知規律,遵循教師為主導,學生為主體,訓練為主線的指導思想,采用以引導發現法為主,直觀演示法、類比法為輔。教學中,精心設計一個又一個帶有啟發性和思考性的問題,創設問題情景,誘導學生思考,使學生始終處于主動探索問題的積極狀態,從而培養思維能力。從課堂反應看,基本上達到了預期效果。

          2、學法

          讓學生在觀察一歸納一檢驗一應用的學習過程中,自主參與知識的發生、發展、形成的過程,從而使學生掌握知識。

          三、教學過程

          具體的教學過程是師生互動交流的過程,共分六個環節:設疑導入、觀圖激趣;指導觀察、形成概念;學生探索、領會定義;知識應用,鞏固提高;總結反饋;分層作業,學以致用。下面我對這六個環節進行說明。

         。ㄒ唬┰O疑導入、觀圖激趣

          由于本節內容相對獨立,專題性較強,所以我采用了開門見山導入方式,直接點明要學的內容,使學生的思維迅速定向,達到開始就明確目標突出重點的效果。

          用多媒體展示一組圖片,使學生感受到生活中的對稱美。再讓學生觀察幾個特殊函數圖象。通過讓學生觀察圖片導入新課,既激發了學生濃厚的學習興趣,又為學習新知識作好鋪墊。

          (二)指導觀察、形成概念

          在這一環節中共設計了2個探究活動。

          探究1 、2 數學中對稱的形式也很多,這節課我們就以函數和=︱x︱以及和為例展開探究。這個探究主要是通過學生的自主探究來實現的,由于有圖片的鋪墊,絕大多數學生很快就說出函數圖象關于Y軸(原點)對稱。接著學生填表,從數值角度研究圖象的這種特征,體現在自變量與函數值之間有何規律? 引導學生先把它們具體化,再用數學符號表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學生發現兩個函數的對稱性反應到函數值上具有的特性, ()然后通過解析式給出嚴格證明,進一步說明這個特性對定義域內任意一個 都成立。 最后給出偶函數(奇函數)定義(板書)。

          在這個過程中,學生把對圖形規律的感性認識,轉化成數量的規律性,從而上升到了理性認識,切實經歷了一次從特殊歸納出一般的過程體驗。

         。ㄈ 學生探索、領會定義

          探究3 下列函數圖象具有奇偶性嗎?

          設計意圖:深化對奇偶性概念的理解。強調:函數具有奇偶性的前提條件是--定義域關于原點對稱。(突破了本節課的難點)

         。ㄋ模┲R應用,鞏固提高

          在這一環節我設計了4道題

          例1判斷下列函數的奇偶性

          選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學生在下面完成。

          例1設計意圖是歸納出判斷奇偶性的步驟:

          (1) 先求定義域,看是否關于原點對稱;

          (2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。

          例2 判斷下列函數的奇偶性:

          例3 判斷下列函數的奇偶性:

          例2、3設計意圖是探究一個函數奇偶性的可能情況有幾種類型?

          例4(1)判斷函數的奇偶性。

         。2)如圖給出函數圖象的一部分,你能根據函數的奇偶性畫出它在y軸左邊的圖象嗎?

          例4設計意圖加強函數奇偶性的幾何意義的應用。

          在這個過程中,我重點關注了學生的推理過程的表述。通過這些問題的解決,學生對函數的奇偶性認識、理解和應用都能提升很大一個高度,達到當堂消化吸收的效果。

          (五)總結反饋

          在以上課堂實錄中充分展示了教法、學法中的互動模式,問題貫穿于探究過程的始終,切實體現了啟發式、問題式教學法的特色。

          在本節課的最后對知識點進行了簡單回顧,并引導學生總結出本節課應積累的解題經驗。知識在于積累,而學習數學更在于知識的應用經驗的積累。所以提高知識的應用能力、增強錯誤的預見能力是提高數學綜合能力的很重要的策略。

         。┓謱幼鳂I,學以致用

          必做題:課本第36頁練習第1-2題。

          選做題:課本第39頁習題1、3A組第6題。

          思考題:課本第39頁習題1、3B組第3題。

          設計意圖:面向全體學生,注重個人差異,加強作業的針對性,對學生進行分層作業,既使學生掌握基礎知識,又使學有余力的學生有所提高,進一步達到不同的人在數學上得到不同的發展。

        高中數學說課稿14

          今天我說課的題目是《函數的單調性》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、教學過程五方面逐一加以分析和說明。

          一、說教材

          1、教材的地位和作用

          本節內容選自北師大版高中數學必修1,第二章第3節。函數是高中數學的課程,它是描述事物運動變化的模型,而函數的單調性是函數的一大特征,它為我們之后的學習奠定重要基礎。

          2、學情分析

          本節課的學生是高一學生,他們在初中階段,通過一次函數、二次函數、反比例函數的學習已經對函數的增減性有了初步的感性認識。在高中階段,用符號語言刻畫圖形語言,用定量分析解釋定性結果,有利于培養學生的理性思維,為后續函數的學習作準備,也為利用倒數研究單調性的相關知識奠定了基礎。

          教學目標分析

          基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分:

          1、知識與技能(1)理解函數的單調性和單調函數的意義;

          (2)會判斷和證明簡單函數的單調性。

          2、過程與方法

         。1)培養從概念出發,進一步研究性質的意識及能力;

          (2)體會數形結合、分類討論的數學思想。

          3、情感態度與價值觀

          由合適的例子引發學生探求數學知識的欲望,突出學生的主觀能動性,激發學生學習數學的興趣。

          三、教學重難點分析

          通過以上對教材和學生的分析以及教學目標,我將本節課的重難點

          重點:

          函數單調性的概念,判斷和證明簡單函數的單調性。

          難點:

          1、函數單調性概念的認知

         。1)自然語言到符號語言的轉化;

         。2)常量到變量的轉化。

          2、應用定義證明單調性的代數推理論證。

          四、教法與學法分析

          1、教法分析

          基于以上對教材、學情的分析以及新課標的教學理念,本節課我采用啟發式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數學在生活中的應用,啟發式教學和討論法發散學生思維,培養學生善于思考的能力。

          2、學法分析

          新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節課我將引導學生通過合作交流、自主探索的方法理解函數的單調性及特征。

          五、教學過程

          為了更好的實現本課的三維目標,并突破重難點,我設計以下五個環節來進行我的教學。

          (一)知識導入

          溫故而知新,我將先從之前學習的知識引入,給出一些函數,比如y=x、y=-x、y=|x|,讓學生作出這些函數的圖像,然后讓學生討論這些函數圖像是上升的還是下降的,由此引入到我的新課。在這個過程中不僅可以檢查學生掌握基本初等函數圖像的情況,而且符合學生的認知結構,通過學生自主探究,從知識產生、發展的過程中構建新概念,有利于激發學生的思維和學習的積極主動性。

         。ǘ┲v授新課

          1.問題:分別做出函數y=x2,y=x+2的圖像,指出上面的函數圖象在哪個區間是上升的,在哪個區間是下降的?

          通過學生熟悉的圖像,及時引導學生觀察,函數圖像上A點的運動情況,引導學生能用自然語言描述出,隨著x增大時圖像變化規律。讓學生大膽的去說,老師逐步修正、完善學生的說法,最后給出正確答案。

          2、觀察函數y=x2隨自變量x變化的情況,設置啟發式問題:

         。1)在y軸的右側部分圖象具有什么特點?

         。2)如果在y軸右側部分取兩個點(x1,y1),(x2,y2),當x1< p="">

         。3)如何用數學符號語言來描述這個規律?

          教師補充:這時我們就說函數y=x2在(0,+∞)上是增函數。

         。4)反過來,如果y=f(x)在(0,+∞)上是增函數,我們能不能得到自變量與函數值的變化規律呢?

          類似地分析圖象在y軸的左側部分。

          通過對以上問題的分析,從正、反兩方面領會函數單調性。師生共同總結出單調增函數的定義,并解讀定義中的關鍵詞,如:區間內,任意,當x1< p="">

          仿照單調增函數定義,由學生說出單調減函數的定義。

          教師總結歸納單調性和單調區間的定義。注意強調:函數的單調性是函數在定義域某個區間上的局部性質,也就是說,一個函數在不同的區間上可以有不同的單調性。

          (我將給出函數y=x2,并畫出這個函數的圖像,讓學生觀察函數圖像的特點,讓他們描述函數圖像的增減性,慢慢得到函數單調性的概念。在這個過程中,學生把對圖像的感性認識轉化為了數學關系,這種從特殊到一般的學習過程有利于學生對概念的理解)

         。ㄈ╈柟叹毩

          1練習1:說出函數f(x)=的單調區間,并指明在該區間上的單調性。x

          練習2:練習2:判斷下列說法是否正確

         、俣x在R上的函數f(x)滿足f(2)>f(1),則函數是R上的增函數。

         、诙x在R上的函數f(x)滿足f(2)>f(1),則函數是R上不是減函數。

          1③已知函數y=,因為f(-1)< p="">

          1我將給出一些具體的函數,如y=,f(x)=3x+2讓學生說出函數的單調區間,并指明在該區間x

          上的單調性。通過這種練習的方式,幫助學生鞏固對知識的掌握。

         。ㄋ模w納總結

          我先讓學生進行小結,函數單調性定義,判斷函數單調性的方法(圖像、定義),然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,為下一節課的教學過程做好準備。

         。ㄎ澹┎贾米鳂I

          必做題:習題2-3A組第2,4,5題。

          選做題:習題2-3B組第2題。

          新課程理念告訴我們,不同的人在數學上可以獲得不同的發展,因此要設計不同程度要求的習題。

        高中數學說課稿15

          高三第一階段復習,也稱“知識篇”。在這一階段,學生重溫高一、高二所學課程,全面復習鞏固各個知識點,熟練掌握基本方法和技能;然后站在全局的高度,對學過的知識產生全新認識。在高一、高二時,是以知識點為主線索,依次傳授講解的,由于后面的相關知識還沒有學到,不能進行縱向聯系,所以,學的知識往往是零碎和散亂,而在第一輪復習時,以章節為單位,將那些零碎的、散亂的知識點串聯起來,并將他們系統化、綜合化,把各個知識點融會貫通。對于普通高中的學生,第一輪復習更為重要,我們希望能做高考試題中一些基礎題目,必須側重基礎,加強復習的針對性,講求實效。

          一、內容分析說明

          1、本小節內容是初中學習的多項式乘法的繼續,它所研究的二項式的乘方的展開式,與數學的其他部分有密切的聯系:

         。1)二項展開式與多項式乘法有聯系,本小節復習可對多項式的變形起到復習深化作用。

         。2)二項式定理與概率理論中的二項分布有內在聯系,利用二項式定理可得到一些組合數的恒等式,因此,本小節復習可加深知識間縱橫聯系,形成知識網絡。

         。3)二項式定理是解決某些整除性、近似計算等問題的一種方法。

          2、高考中二項式定理的試題幾乎年年有,多數試題的難度與課本習題相當,是容易題和中等難度的

          試題,考察的題型穩定,通常以選擇題或填空題出現,有時也與應用題結合在一起求某些數、式的

          近似值。

          二、學校情況與學生分析

         。1)我校是一所鎮普通高中,學生的基礎不好,記憶力較差,反應速度慢,普遍感到數學難學。但大部分學生想考大學,主觀上有學好數學的愿望。

         。2)授課班是政治、地理班,學生聽課積極性不高,聽課率低(60﹪),注意力不能持久,不能連續從事某項數學活動。課堂上喜歡輕松詼諧的氣氛,大部分能機械的模仿,部分學生好記筆記。

          三、教學目標

          復習課二項式定理計劃安排兩個課時,本課是第一課時,主要復習二項展開式和通項。根據歷年高考對這部分的考查情況,結合學生的特點,設定如下教學目標:

          1、知識目標:(1)理解并掌握二項式定理,從項數、指數、系數、通項幾個特征熟記它的展開式。

         。2)會運用展開式的通項公式求展開式的特定項。

          2、能力目標:(1)教給學生怎樣記憶數學公式,如何提高記憶的持久性和準確性,從而優化記憶品質。記憶力是一般數學能力,是其它能力的基礎。

         。2)樹立由一般到特殊的解決問題的意識,了解解決問題時運用的數學思想方法。

          3、情感目標:通過對二項式定理的復習,使學生感覺到能掌握數學的部分內容,樹立學好數學的信心。有意識地讓學生演練一些歷年高考試題,使學生體驗到成功,在明年的高考中,他們也能得分。

          四、教學過程

          1、知識歸納

         。1)創設情景:①同學們,還記得嗎?、 、展開式是什么?

         、趯W生一起回憶、老師板書。

          設計意圖:①提出比較容易的問題,吸引學生的注意力,組織教學。

         、跒閷W生能回憶起二項式定理作鋪墊:激活記憶,引起聯想。

         。2)二項式定理:①設問展開式是什么?待學生思考后,老師板書

          = C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)

          ②老師要求學生說出二項展開式的特征并熟記公式:共有項;各項里a的指數從n起依次減小1,直到0為止;b的指數從0起依次增加1,直到n為止。每一項里a、b的指數和均為n。

         、垤柟叹毩曁羁

          設計意圖:①教給學生記憶的方法,比較分析公式的特點,記規律。

          ②變用公式,熟悉公式。

         。3)展開式中各項的系數C,C,C,…,稱為二項式系數。

          展開式的通項公式Tr+1=C an-rbr,其中r= 0,1,2,…n表示展開式中第r+1項。

          2、例題講解

          例1求的展開式的第4項的二項式系數,并求的第4項的系數。

          講解過程

          設問:這里,要求的第4項的有關系數,如何解決?

          學生思考計算,回答問題;

          老師指明①當項數是4時,,此時,所以第4項的二項式系數是,

         、诘4項的系數與的第4項的二項式系數區別。

          板書

          解:展開式的第4項

          所以第4項的系數為,二項式系數為。

          選題意圖:①利用通項公式求項的系數和二項式系數;②復習指數冪運算。

          例2求的展開式中不含的項。

          講解過程

          設問:①不含的項是什么樣的項?即這一項具有什么性質?

         、趩栴}轉化為第幾項是常數項,誰能看出哪一項是常數項?

          師生討論“看不出哪一項是常數項,怎么辦?”

          共同探討思路:利用通項公式,列出項數的方程,求出項數。

          老師總結思路:先設第項為不含的項,得,利用這一項的指數是零,得到關于的方程,解出后,代回通項公式,便可得到常數項。

          板書

          解:設展開式的第項為不含項,那么

          令,解得,所以展開式的第9項是不含的項。

          因此。

          選題意圖:①鞏固運用展開式的通項公式求展開式的特定項,形成基本技能。

          ②判斷第幾項是常數項運用方程的思想;找到這一項的項數后,實現了轉化,體現轉化的數學思想。

          例3求的展開式中,的系數。

          解題思路:原式局部展開后,利用加法原理,可得到展開式中的系數。

          板書

          解:由于,則的展開式中的系數為的展開式中的系數之和。

          而的展開式含的項分別是第5項、第4項和第3項,則的展開式中的系數分別是:。

          所以的展開式中的系數為

          例4如果在(+)n的展開式中,前三項系數成等差數列,求展開式中的有理項。

          解:展開式中前三項的系數分別為1,,,

          由題意得2× =1+,得n=8.

          設第r+1項為有理項,T =C · ·x,則r是4的倍數,所以r=0,4,8.

          有理項為T1=x4,T5= x,T9= 。

          3、課堂練習

          1、(20xx年江蘇,7)(2x+)4的展開式中x3的系數是

          A.6B.12 C.24 D.48

          解析:(2x+)4=x2(1+2)4,在(1+2)4中,x的系數為C ·22=24.

          答案:C

          2、(20xx年全國Ⅰ,5)(2x3-)7的展開式中常數項是

          A.14 B.14 C.42 D.-42

          解析:設(2x3-)7的展開式中的第r+1項是T =C(2x3)(-)r=C 2 ·

         。ǎ1)r·x,

          當-+3(7-r)=0,即r=6時,它為常數項,∴C(-1)6·21=14.

          答案:A

          3、(20xx年湖北,文14)已知(x +x)n的展開式中各項系數的和是128,則展開式中x5的系數是_____________.(以數字作答)

          解析:∵(x +x)n的展開式中各項系數和為128,

          ∴令x=1,即得所有項系數和為2n=128.

          ∴n=7.設該二項展開式中的r+1項為T =C(x)·(x)r=C ·x,

          令=5即r=3時,x5項的系數為C =35.

          答案:35

          五、課堂教學設計說明

          1、這是一堂復習課,通過對例題的研究、討論,鞏固二項式定理通項公式,加深對項的系數、項的二項式系數等有關概念的理解和認識,形成求二項式展開式某些指定項的基本技能,同時,要培養學生的運算能力,邏輯思維能力,強化方程的思想和轉化的思想。

          2、在例題的選配上,我設計了一定梯度。第一層次是給出二項式,求指定的項,即項數已知,只需直接代入通項公式即可(例1);第二層次(例2)則需要自己創造代入的條件,先判斷哪一項為所求,即先求項數,利用通項公式中指數的關系求出,此后轉化為第一層次的問題。第三層次突出數學思想的滲透,例3需要變形才能求某一項的系數,恒等變形是實現轉化的手段。在求每個局部展開式的某項系數時,又有分類討論思想的指導。而例4的設計是想增加題目的綜合性,求的n過程中,運用等差數列、組合數n等知識,求出后,有化歸為前面的問題。

          六、個人見解

        【高中數學說課稿】相關文章:

        高中數學的說課稿11-04

        高中數學經典說課稿范文06-24

        高中數學集合說課稿11-12

        高中數學面試說課稿11-18

        高中數學《集合》說課稿10-31

        高中數學函數的說課稿11-17

        高中數學的說課稿范文04-29

        高中數學說課稿05-01

        高中數學說課稿06-09

        高中數學的優秀說課稿12-04

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>