高中數學說課稿通用(15篇)
作為一名老師,通常會被要求編寫說課稿,借助說課稿我們可以快速提升自己的教學能力。那么問題來了,說課稿應該怎么寫?下面是小編整理的高中數學說課稿,僅供參考,大家一起來看看吧。
高中數學說課稿1
【教材分析】
1.本節教材的地位與作用
本節主要研究閉區間上的連續函數最大值和最小值的求法和實際應用,分兩課時,這里是第一課時,它是在學生已經會求某些函數的最值,并且已經掌握了性質:"如果f(x)是閉區間[a,b]上的連續函數,那么f(x)在閉區間[a,b]上有最大值和最小值",以及會求可導函數的極值之后進行學習的,學好這一節,學生將會求更多的函數的最值,運用本節知識可以解決科技、經濟、社會中的一些如何使成本最低、產量最高、效益最大等實際問題.這節課集中體現了數形結合、理論聯系實際等重要的數學思想方法,學好本節,對于進一步完善學生的知識結構,培養學生用數學的意識都具有極為重要的意義.
2.教學重點
會求閉區間上連續開區間上可導的函數的最值.
3.教學難點
高三年級學生雖然已經具有一定的知識基礎,但由于對求函數極值還不熟練,特別是對優化解題過程依據的理解會有較大的困難,所以這節課的難點是理解確定函數最值的方法.
4.教學關鍵
本節課突破難點的關鍵是:理解方程f′(x)=0的解,包含有指定區間內全部可能的極值點.
【教學目標】
根據本節教材在高中數學知識體系中的地位和作用,結合學生已有的認知水平,制定本節如下的教學目標:
1.知識和技能目標
(1)理解函數的最值與極值的區別和聯系.
。2)進一步明確閉區間[a,b]上的連續函數f(x),在[a,b]上必有最大、最小值.
。3)掌握用導數法求上述函數的最大值與最小值的方法和步驟.
2.過程和方法目標
(1)了解開區間內的連續函數或閉區間上的不連續函數不一定有最大、最小值.
(2)理解閉區間上的連續函數最值存在的可能位置:極值點處或區間端點處.
。3)會求閉區間上連續,開區間內可導的函數的最大、最小值.
3.情感和價值目標
。1)認識事物之間的的區別和聯系.
(2)培養學生觀察事物的能力,能夠自己發現問題,分析問題并最終解決問題.
。3)提高學生的數學能力,培養學生的創新精神、實踐能力和理性精神.
【教法選擇】
根據皮亞杰的建構主義認識論,知識是個體在與環境相互作用的過程中逐漸建構的結果,而認識則是起源于主客體之間的相互作用.
本節課在幫助學生回顧肯定了閉區間上的連續函數一定存在最大值和最小值之后,引導學生通過觀察閉區間內的連續函數的幾個圖象,自己歸納、總結出函數最大值、最小值存在的可能位置,進而探索出函數最大值、最小值求解的方法與步驟,并優化解題過程,讓學生主動地獲得知識,老師只是進行適當的引導,而不進行全部的灌輸.為突出重點,突破難點,這節課主要選擇以合作探究式教學法組織教學.
【學法指導】
對于求函數的最值,高三學生已經具備了良好的知識基礎,剩下的問題就是有沒有一種更一般的方法,能運用于更多更復雜函數的求最值問題?教學設計中注意激發起學生強烈的求知欲望,使得他們能積極主動地觀察、分析、歸納,以形成認識,參與到課堂活動中,充分發揮他們作為認知主體的作用.
【教學過程】
本節課的教學,大致按照"創設情境,鋪墊導入--合作學習,探索新知--指導應用,鼓勵創新--歸納小結,反饋回授"四個環節進行組織.
教學環節
教學內容
設計意圖
一、創設情境,鋪墊導入
1.問題情境:在日常生活、生產和科研中,常常會遇到求什么條件下可以使成本最低、產量最大、效益最高等問題,這往往可以歸結為求函數的最大值與最小值.
如圖,有一長80cm,寬60cm
的矩形不銹鋼薄板,用此薄板折
成一個長方體無蓋容器,要分別
過矩形四個頂點處各挖去一個
全等的小正方形,按加工要求,長方體的高不小于10cm且不大于
20cm.設長方體的高為xcm,體積
為Vcm3.問x為多大時,V最大?
并求這個最大值.
解:由長方體的高為xcm,可知其底面兩邊長分別是
。80-2x)cm,(60-2x)cm,(10≤x≤20).
所以體積V與高x有以下函數關系
V=(80-2x)(60-2x)x
=4(40-x)(30-x)x.
2.引出課題:分析函數關系可以看出,以前學過的方法在這個問題中較難湊效,這節課我們將學習一種很重要的方法,來求某些函數的最值.
以實例引發思考,有利于學生感受到數學來源于現實生活,培養學生用數學的意識,同時營造出寬松、和諧、積極主動的課堂氛圍,在新舊知識的矛盾沖突中,激發起學生的探究熱情.
實際問題中,函數和自變量x范圍的設置,都緊扣本節課的核心:確定閉區間上的連續函數的最(大)值.
通過運用幾何畫板演示,增強直觀性,幫助學生迅速準確地發現相關的數量關系.提出問題后,引導學生發現,求所列函數的最大值是以前學習過的方法不能解決的,由此引出新課,使學生深感繼續學習新知識的必要性,為進一步的研究作好鋪墊.
教學環節
教學內容
設計意圖
二、合作學習,探索新知
1.我們知道,在閉區間[a,b]上連續的函數f(x)在[a,b]上必有最大值與最小值.
問題1:如果是在開區間(a,b)上情況如何?
問題2:如果[a,b]上不連續一定還成立嗎?
2.如圖為連續函數f(x)的圖象:在閉區間[a,b]上連續函數f(x)的最大值、最小值分別是什么?分別在何處取得?3.以上分析,說明求函數f(x)在閉區間[a,b]上最值的關鍵是什么?
歸納:設函數f(x)在[a,b]上連續,在(a,b)內可導,求f(x)在[a,b]上的最大值與最小值的步驟如下:
。1)求f(x)在(a,b)內的極值;
。2)將f(x)的各極值與f(a)、f(b)比較,其中最大的一個是最大值,最小的一個是最小值.
通過對已有相關知識的回顧和深入分析,自然地提出問題:閉區間上的連續函數最大值和最小值在何處取得?如何能求得最大值和最小值?以問題制造懸念,引領著學生來到新知識的生成場景中.
對取得最大值最小值的兩種可能位置的'結論,在高中階段不作證明,為使學生形成更深刻的印象,更好地進行發現,教學中通過改變區間位置,引導學生觀察各種區間內圖象上最大值最小值取得的位置,形成感性認識,進而上升到理性的高度.
為新知的發現奠定基礎后,提出教學目標,讓學生帶著問題走進課堂,既明確了學習目的,又激發起學生的求知熱情.
學生在合作交流的探究氛圍中思考、質疑、傾聽、表述,體驗到成功的喜悅,學會學習、學會合作.
在整個新知形成過程中,教師的身份始終是啟發者、鼓勵者和指導者,以提高學生抽象概括、分析歸納及語言表述等基本的數學思維能力.深化對概念意義的理解:極值反映函數的一種局部性質,最值則反映函數的一種整體性質.
三、指導應用,鼓勵創新
例2如圖,有一長80cm,寬60cm
的矩形不銹鋼薄板,用此薄板折
成一個長方體無蓋容器,要分別
過矩形四個頂點處各挖去一個
全等的小正方形,按加工要求,長方體的高不小于10cm不大于
20cm,設長方體的高為xcm,體積
為Vcm3.問x為多大時,V最大?
并求這個最大值.分析:建立V與x的函數的關系后,問題相當于求x為何值時,V最小,可用本節課學習的導數法加以解決.
例題2的解決與本課的引例前后呼應,繼續鞏固用導數法求閉區間上連續函數的最值,同時也讓學生體會到現實生活中蘊含著大量的數學信息,培養他們用數學的意識和能力.
四、歸納小結,反饋回授
課堂小結:
1.在閉區間[a,b]上連續的函數f(x)在[a,b]上必有最大值與最小值;2.求閉區間上連續函數的最值的方法與步驟;3.利用導數求函數最值的關鍵是對可導函數使導數為零的點的判定.
作業布置:P1391、2、3
通過課堂小結,深化對知識理解,完善認識結構,領悟思想方法,強化情感體驗,提高認識能力.課外作業有利于教師發現教學中的不足,及時反饋調節.
【教學設計說明】
本節課旨在加強學生運用導數的基本思想去分析和解決問題的意識和能力,即利用導數知識求閉區間上可導的連續函數的最值,這是導數作為數學工具的一個具體體現,整堂課對閉區間上的連續函數的最大值和最小值以"是否存在?存在于哪里?怎么求?"為線索展開.
1.由于學生對極限和導數的知識學習還談不上深入熟練,因此教學中從直觀性和新舊知識的矛盾沖突中激發學生的探究熱情,充分利用學生已有的知識體驗和生活經驗,遵循學生認知的心理規律,努力實現課程改革中以"學生的發展為本"的基本理念.
2.關于教學過程,對于本節課的重點:求閉區間上連續,開區間上可導的函數的最值的方法和一般步驟,必須讓學生在課堂上就能掌握.對于難點:求最值問題的優化方法及相關問題,層層遞進逐步提出,讓學生帶著問題走進課堂,師生共同探究解決,知識的建構過程充分調動學生的主觀能力性.
3.在教學手段上,制作多媒體課件輔助教學,使得數學知識讓學生更易于理解和接受;課堂教學與現代教育技術的有機整合,大大提高了課堂教學效率.
4.關于教學法,為充分調動學生的學習積極性,讓學生能夠主動愉快地學習,本節課始終貫徹"教師為主導、學生為主體、探究為主線、思維為核心"的數學教學思想,引導學生主動參與到課堂教學全過程中.
高中數學說課稿2
今天我說課的題目是《二次函數的圖像》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計五方面逐一加以分析和說明。
一、教材分析
教材的地位和作用
本節內容選自北師大版高中數學必修1,第二章第4.1節。二次函數的圖像在教材中起著承上啟下的作用。
學情分析
本節課的學生是高一學生,他們在初中的時候已經學習過有關內容,為本節課的學習打下了基礎,另一方面,二次函數解析式中的系數由常數轉變為參數,使學生對二次函數的圖像由感性認識上升到理性認識,能培養學生利用數形結合思想解決問題的能力。
二、教學目標分析
基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分:
1、知識與技能
理解二次函數中參數a,b,c,h,k對其圖像的影響;
2、過程與方法
通過體驗對二次函數圖像平移的研究方法,能遷移到其他函數圖像的研究。
3、情感態度與價值觀
通過本節的學習,進一步體會數形結合思想的作用,感受到數學中數與形的辯證統一。
三、教學重難點分析
通過以上對教材和學生的分析以及教學目標,我將本節課的重難點確定如下
重點:
二次函數圖像的平移變換規律及應用。
難點:
探索平移對函數解析式的影響及如何利用平移變換規律求函數解析式,并能把平移變換規律遷移到其他函數。
四、教法與學法分析
1、教法分析
基于以上對教材、學情的分析以及新課改的'要求,本節課我采用啟發式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數學在生活中的應用,啟發式教學和討論法發散學生思維,培養學生善于思考的能力。
2、學法分析
新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節課我將引導學生通過合作交流、自主探索的方法進行學習。
五、教學過程
為了更好的實現本課的三維目標,并突破重難點,我將設計以下五個環節來進行我的教學。
。1)知識導入
溫故而知新,我將先從之前學習的知識引入,給出一些函數,比如y=x2、y=2x2,讓學生作出這些函數的圖像,然后讓學生比較這些函數圖像的相同點和不同點,由此引入我的新課。一方面讓學生總結復習已有知識,為后面的學習做好鋪墊,另一方面,使學生在自己熟悉的問題中首先獲得解題成功的快樂體驗。
(2)講授新課
例1:畫出函數y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像
讓學生畫出他們的圖像并觀察函數圖像的特點,再讓學生與多媒體課件展示的圖像進行對比,得出結論:若二次函數的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。
前面的練習和例題,基本涵蓋了二次函數圖像平移變換的各種情況,啟發并引導了學生將實例的結論進行總結,得出y=x2到y=ax2,y=ax2到y=a(x+h)2+k,y=ax2到y=ax2+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a
。3)鞏固練習
我將組織學生進行練習,完成課本44頁1-3題。通過這種練習的方式,幫助學生鞏固和加深二次函數中參數對圖像的影響。
。4)歸納總結
我先讓學生進行小結,然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,可以進行適當反思,為下一節課的教學過程做好準備。
。5)布置作業
略
高中數學說課稿3
教材地位及作用
本節課是高中數學3(必修)第三章概率的第二節古典概型的第一課時,是在隨機事件的概率之后,幾何概型之前,尚未學習排列組合的情況下教學的。古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。
學好古典概型可以為其它概率的學習奠定基礎,同時有利于理解概率的概念,有利于計算一些事件的概率,有利于解釋生活中的一些問題。
教學重點
理解古典概型的概念及利用古典概型求解隨機事件的概率。
根據本節課的地位和作用以及新課程標準的具體要求,制訂教學重點。
教學難點
如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數和試驗中基本事件的總數。
根據本節課的內容,即尚未學習排列組合,以及學生的心理特點和認知水平,制定了教學難點。
教學目標
1.知識與技能
。1)理解古典概型及其概率計算公式,
。2)會用列舉法計算一些隨機事件所含的基本事件數及事件發生的概率。
2.過程與方法
根據本節課的內容和學生的實際水平,通過模擬試驗讓學生理解古典概型的特征:試驗結果的有限性和每一個試驗結果出現的等可能性,觀察類比各個試驗,歸納總結出古典概型的概率計算公式,體現了化歸的重要思想,掌握列舉法,學會運用數形結合、分類討論的思想解決概率的計算問題。
3.情感態度與價值觀
概率教學的核心問題是讓學生了解隨機現象與概率的意義,加強與實際生活的聯系,以科學的態度評價身邊的一些隨機現象。適當地增加學生合作學習交流的機會,盡量地讓學生自己舉出生活和學習中與古典概型有關的實例。使得學生在體會概率意義的同時,感受與他人合作的重要性以及初步形成實事求是地科學態度和鍥而不舍的求學精神。
根據新課程標準,并結合學生心理發展的需求,以及人格、情感、價值觀的具體要求制訂而成。這對激發學生學好數學概念,養成數學習慣,感受數學思想,提高數學能力起到了積極的作用。
教學過程分析
一,提出問題引入新課
在課前,教師布置任務,以數學小組為單位,完成下面兩個模擬試驗:
試驗一:拋擲一枚質地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個數學小組至少完成20次(最好是整十數),最后由科代表匯總;
試驗二:拋擲一枚質地均勻的骰子,分別記錄"1點"、"2點"、"3點"、"4點"、"5點"和"6點"的次數,要求每個數學小組至少完成60次(最好是整十數),最后由科代表匯總。
在課上,學生展示模擬試驗的操作方法和試驗結果,并與同學交流活動感受。
教師最后匯總方法、結果和感受,并提出問題?
1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?
不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結果是頻率,而不是概率。
2.根據以前的學習,上述兩個模擬試驗的每個結果之間都有什么特點?
學生展示模擬試驗的操作方法和試驗結果,并與同學交流活動感受,教師最后匯總方法、結果和感受,并提出問題。
通過課前的模擬實驗的展示,讓學生感受與他人合作的重要性,培養學生運用數學語言的能力。隨著新問題的提出,激發了學生的求知欲望,通過觀察對比,培養了學生發現問題的能力。
二,思考交流形成概念
在試驗一中隨機事件只有兩個,即"正面朝上"和"反面朝上",并且他們都是互斥的,由于硬幣質地是均勻的,因此出現兩種隨機事件的可能性相等,即它們的概率都是;
在試驗二中隨機事件有六個,即"1點"、"2點"、"3點"、"4點"、"5點"和"6點",并且他們都是互斥的,由于骰子質地是均勻的,因此出現六種隨機事件的可能性相等,即它們的概率都是。
我們把上述試驗中的隨機事件稱為基本事件,它是試驗的每一個可能結果。
基本事件有如下的兩個特點:
。1)任何兩個基本事件是互斥的;
。2)任何事件(除不可能事件)都可以表示成基本事件的和。
特點(2)的理解:在試驗一中,必然事件由基本事件"正面朝上"和"反面朝上"組成;在試驗二中,隨機事件"出現偶數點"可以由基本事件"2點"、"4點"和"6點"共同組成。
學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關特點加以說明,加深新概念的理解。
讓學生從問題的相同點和不同點中找出研究對象的對立統一面,這能培養學生分析問題的能力,同時也教會學生運用對立統一的辯證唯物主義觀點來分析問題的一種方法。
三,思考交流形成概念
例1從字母中任意取出兩個不同字母的試驗中,有哪些基本事件?
分析:為了解基本事件,我們可以按照字典排序的順序,把所有可能的結果都列出來。利用樹狀圖可以將它們之間的關系列出來。
我們一般用列舉法列出所有基本事件的結果,畫樹狀圖是列舉法的'基本方法,一般分布完成的結果(兩步以上)可以用樹狀圖進行列舉。
。錉顖D)
解:所求的基本事件共有6個:
,,,
,,
觀察對比,發現兩個模擬試驗和例1的共同特點:
試驗一中所有可能出現的基本事件有"正面朝上"和"反面朝上"2個,并且每個基本事件出現的可能性相等,都是;
試驗二中所有可能出現的基本事件有"1點"、"2點"、"3點"、"4點"、"5點"和"6點"6個,并且每個基本事件出現的可能性相等,都是;
例1中所有可能出現的基本事件有"A"、"B"、"C"、"D"、"E"和"F"6個,并且每個基本事件出現的可能性相等,都是;
經概括總結后得到:
1,試驗中所有可能出現的基本事件只有有限個;(有限性)
2,每個基本事件出現的可能性相等。(等可能性)
我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型。
思考交流:
。1)向一個圓面內隨機地投射一個點,如果該點落在圓內任意一點都是等可能的,你認為這是古典概型嗎?為什么?
答:不是古典概型,因為試驗的所有可能結果是圓面內所有的點,試驗的所有可能結果數是無限的,雖然每一個試驗結果出現的"可能性相同",但這個試驗不滿足古典概型的第一個條件。
(2)如圖,某同學隨機地向一靶心進行射擊,這一試驗的結果只有有限個:命中10環、命中9環。。。。。。命中5環和不中環。你認為這是古典概型嗎?為什么?
答:不是古典概型,因為試驗的所有可能結果只有7個,而命中10環、命中9環。。。。。。命中5環和不中環的出現不是等可能的,即不滿足古典概型的第二個條件。
先讓學生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優點。讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結得到的結論,教師最后補充說明。學生互相交流,回答補充,教師歸納。將數形結合和分類討論的思想滲透到具體問題中來。由于沒有學習排列組合,因此用列舉法列舉基本事件的個數,不僅能讓學生直觀的感受到對象的總數,而且還能使學生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數這一難點。培養運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現了數學的化歸思想。啟發誘導的同時,訓練了學生觀察和概括歸納的能力。通過用表格列出相同和不同點,能讓學生很好的理解古典概型。從而突出了古典概型這一重點。
兩個問題的設計是為了讓學生更加準確的把握古典概型的兩個特點。突破了如何判斷一個試驗是否是古典概型這一教學難點。
四,觀察分析推導方程
問題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?
分析:
實驗一中,出現正面朝上的概率與反面朝上的概率相等,即
P("正面朝上")=P("反面朝上")
由概率的加法公式,得
P("正面朝上")+P("反面朝上")=P(必然事件)=1
因此P("正面朝上")=P("反面朝上")=
即試驗二中,出現各個點的概率相等,即
P("1點")=P("2點")=P("3點")
。絇("4點")=P("5點")=P("6點")
反復利用概率的加法公式,我們有
P("1點")+P("2點")+P("3點")+P("4點")+P("5點")+P("6點")=P(必然事件)=1
所以P("1點")=P("2點")=P("3點")
。絇("4點")=P("5點")=P("6點")=
進一步地,利用加法公式還可以計算這個試驗中任何一個事件的概率,例如,
P("出現偶數點")=P("2點")+P("4點")+P("6點")=++==
即根據上述兩則模擬試驗,可以概括總結出,古典概型計算任何事件的概率計算公式為:
教師提出問題,引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結果,發現其中的聯系。
鼓勵學生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學生感受數學化歸思想的優越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點。
提問:
(1)在例1的實驗中,出現字母"d"的概率是多少?
出現字母"d"的概率為:
提問:
。2)在使用古典概型的概率公式時,應該注意什么?
歸納:
在使用古典概型的概率公式時,應該注意:
。1)要判斷該概率模型是不是古典概型;
(2)要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。除了畫樹狀圖,還有什么方法求基本事件的個數呢?
教師提問,學生回答,加深對古典概型的概率計算公式的理解。
深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關鍵。
四,例題分析推廣應用
例2單選題是標準化考試中常用的題型,一般是從A,B,C,D四個選項中選擇一個正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?
分析:
解決這個問題的關鍵,即討論這個問題什么情況下可以看成古典概型。如果考生掌握或者掌握了部分考察內容,這都不滿足古典概型的第2個條件——等可能性,因此,只有在假定考生不會做,隨機地選擇了一個答案的情況下,才可以化為古典概型。
解:
這是一個古典概型,因為試驗的可能結果只有4個:選擇A、選擇B、選擇C、選擇D,即基本事件共有4個,考生隨機地選擇一個答案是選擇A,B,C,D的可能性是相等的。從而由古典概型的概率計算公式得:
課后思考:
。1)在標準化考試中既有單選題又有多選題,多選題是從A,B,C,D四個選項中選出所有正確的答案,同學們可能有一種感覺,如果不知道正確答案,多選題更難猜對,這是為什么?
。2)假設有20道單選題,如果有一個考生答對了17道題,他是隨機選擇的可能性大,還是他掌握了一定知識的可能性大?
學生先思考再回答,教師對學生沒有注意到的關鍵點加以說明。
讓學生明確決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。
鞏固學生對已學知識的掌握。
例3同時擲兩個骰子,計算:
。1)一共有多少種不同的結果?
。2)其中向上的點數之和是5的結果有多少種?
。3)向上的點數之和是5的概率是多少?
解:(1)擲一個骰子的結果有6種,我們把兩個骰子標上記號1,2以便區分,由于1號骰子的結果都可以與2號骰子的任意一個結果配對,我們用一個"有序實數對"來表示組成同時擲兩個骰子的一個結果(如表),其中第一個數表示1號骰子的結果,第二個數表示2號骰子的結果。(可由列表法得到)
由表中可知同時擲兩個骰子的結果共有36種。
(2)在上面的結果中,向上的點數之和為5的結果有4種,分別為:
。1,4),(2,3),(3,2),(4,1)
。3)由于所有36種結果是等可能的,其中向上點數之和為5的結果(記為事件A)有4種,因此,由古典概型的概率計算公式可得
先給出問題,再讓學生完成,然后引導學生分析問題,發現解答中存在的問題。
引導學生用列表來列舉試驗中的基本事件的總數。
利用列表數形結合和分類討論,既能形象直觀地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解,和用列舉法來計算一些隨機事件所含基本事件的個數及事件發生的概率。
培養學生運用數形結合的思想,提高發現問題、分析問題、解決問題的能力,增強學生數學思維情趣,形成學習數學知識的積極態度。
五,探究思考鞏固深
化問題思考:為什么要把兩個骰子標上記號?如果不標記號會出現什么情況?你能解釋其中的原因嗎?
如果不標上記號,類似于(1,2)和(2,1)的結果將沒有區別。這時,所有可能的結果將是:
。1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21種,和是5的結果有2個,它們是(1,4)(2,3),所求的概率為
這就需要我們考察兩種解法是否滿足古典概型的要求了。
可以通過展示兩個不同的骰子所拋擲出來的點,感受第二種方法構造的基本事件不是等可能事件,另外還可以利用Excel展示第二種方法中構造的21個基本事件不是等可能事件。從而加深印象,鞏固知識。
要求學生觀察對比兩種結果,找出問題產生的原因。
通過觀察對比,發現兩種結果不同的根本原因是——研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現了學生的主體地位,逐漸養成自主探究能力。
六,總結概括加深理解
1.我們將具有
。1)試驗中所有可能出現的基本事件只有有限個;(有限性)
(2)每個基本事件出現的可能性相等。(等可能性)
這樣兩個特點的概率模型稱為古典概率概型,簡稱古典概型。
2.古典概型計算任何事件的概率計算公式
3.求某個隨機事件A包含的基本事件的個數和實驗中基本事件的總數的常用方法是列舉法(畫樹狀圖和列表),應做到不重不漏。
學生小結歸納,不足的地方老師補充說明。
使學生對本節課的知識有一個系統全面的認識,并把學過的相關知識有機地串聯起來,便于記憶和應用,也進一步升華了這節課所要表達的本質思想,讓學生的認知更上一層。
七,布置作業
P123練習1、2題
學生課后自主完成。
進一步讓學生掌握古典概型及其概率公式,并能夠學以致用,加深對本節課的理解。
八,板書設計教法與學法分析教法分析
根據本節課的特點,采用引導發現和歸納概括相結合的教學方法,通過提出問題、思考問題、解決問題等教學過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發學生的學習興趣,調動學生的主體能動性,讓每一個學生充分地參與到學習活動中來。
學法分析
學生在教師創設的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結合,體現了學生的主體地位,培養了學生由具體到抽象,由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。
評價分析評價設計
本節課的教學通過提出問題,引導學生發現問題,經歷思考交流概括歸納后得出古典概型的概念,由兩個問題的提出進一步加深對古典概型的兩個特點的理解;再通過學生觀察類比推導出古典概型的概率計算公式。這一過程能夠培養學生發現問題、分析問題、解決問題的能力。
在解決概率的計算上,教師鼓勵學生嘗試列表和畫出樹狀圖,讓學生感受求基本事件個數的一般方法,從而化解由于沒有學習排列組合而學習概率這一教學困惑。整個教學設計的順利實施,達到了教師的教學目標。
高中數學說課稿4
各位評委老師好:今天我說課的題目是
是必修章第節的內容,我將以新課程標準的理念指導本節課的教學,從教材分析,教法學法,教學過程,教學評價四個方面加以說明。
一、 教材分析
是在學習了基礎上進一步研究 并為后面學習 做準備,在整個
高中數學中起著承上啟下的作用,因此本節內容十分重要。
根據新課標要求和學生實際水平我制定以下教學目標
1、 知識能力目標:使學生理解掌握
2、 過程方法目標:通過觀察歸納抽象概括使學生構建領悟 數學思想,培養 能力
3、 情感態度價值觀目標:通過學習體驗數學的科學價值和應用價值,培養善于
觀察勇于思考的學習習慣和嚴謹 的科學態度
根據教學目標、本節特點和學生實際情況本節重點是 ,由于學生對 缺少感性認識,所以本節課的重點是
二、教法學法
根據教師主導地位和學生主體地位相統一的規律,我采用引導發現法為本節課的主要教學方法并借助多媒體為輔助手段。在教師點撥下,學生自主探索、合作交流來尋求解決問題的方法。
三、 教學過程
四、 教學程序及設想
1、由……引入:
把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實際情況下進行學習,可以使學生利用已有知識與經驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。
對于本題:……
2、由實例得出本課新的知識點是:……
3、講解例題。
我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于發展學生的思維能力。在題中:
4、能力訓練。
課后練習……
使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
5、總結結論,強化認識。
知識性內容的小結,可把課堂教學傳授的知識盡快化為學生的素質;數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐漸培養學生的良好的個性品質目標。
6、變式延伸,進行重構。
重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的`串聯、累積、加工,從而達到舉一反三的效果。
五、教學評價
學生學習的學習結果評價當然重要,但是更重要的是學生學習的過程評價,教師應
當高度重視學生學習過程中的參與度、自信心、團隊精神合作意識數學能力的發現,以及學習的興趣和成就感。
高中數學說課稿5
一、教材分析
集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。
本節課主要分為兩個部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關系。
二、教學目標
1、學習目標
(1)通過實例,了解集合的含義,體會元素與集合之間的關系以及理解“屬
于”關系;
。2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;
2、能力目標
。1)能夠把一句話一個事件用集合的方式表示出來。
。2)準確理解集合與及集合內的元素之間的關系。
3、情感目標
通過本節的把實際事件用集合的方式表示出來,從而培養數學敏感性,了 解到數學于生活中。
三、教學重點與難點
重點 集合的基本概念與表示方法;
難點 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合;
四、教學方法
(1)本課將采用探究式教學,讓學生主動去探索,激發學生的學習興趣。并分層教學,這樣可顧及到全體學生,達到優生得到培養,后進生也有所收獲的效果;
。2)學生在老師的引導下,通過閱讀教材,自主學習、思考、交流、討論和概括,從而完成本節課的教學目標。
五、學習方法
。1)主動學習法:舉出例子,提出問題,讓學生在獲得感性認識的同時,
教師層層深入,啟發學生積極思維,主動探索知識,培養學生思維想象 的綜合能力。
。2)反饋補救法:在練習中,注意觀察學生對學習的反饋情況,以實現“培
優扶差,滿足不同!
六、教學思路
具體的思路如下
復習的引入:講一些集合的相關數學及相關數學家的經歷故事!這可以讓學生更加了解數學史從何使學生對數學更加感興趣,有助于上課的效率!因為時間關系這里我就不說相關數學史咯。
一、 引入課題
軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的'對象是全體的高一學生還是個別學生?
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合,即是一些研究對象的總體。
二、 正體部分
學生閱讀教材,并思考下列問題:
(1)集合有那些概念?
。2)集合有那些符號?
(3)集合中元素的特性是什么?
。4)如何給集合分類?
(一)集合的有關概念
(1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,
都可以稱作對象.
。2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由
這些對象的全體構成的集合.
。3)元素:集合中每個對象叫做這個集合的元素.
集合通常用大寫的拉丁字母表示,如A、B、C、??元素通常用小寫的拉丁字母表示,如a、b、c、??
1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,
對學生的例子予以討論、點評,進而講解下面的問題。
2、元素與集合的關系
。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A
。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作a?A
要注意“∈”的方向,不能把a∈A顛倒過來寫. (舉例)
集合A={3,4,6,9}a=2 因此我們知道a?A
3、集合中元素的特性
。1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了.
(2)互異性:集合中的元素一定是不同的.
。3)無序性:集合中的元素沒有固定的順序.
4、集合分類
根據集合所含元素個屬不同,可把集合分為如下幾類:
。1)把不含任何元素的集合叫做空集Ф
。2)含有有限個元素的集合叫做有限集
(3)含有無窮個元素的集合叫做無限集
注:應區分?,{?},{0},0等符號的含義
5、常用數集及其表示方法
。1)非負整數集(自然數集):全體非負整數的集合.記作N
。2)正整數集:非負整數集內排除0的集.記作N*或N+
。3)整數集:全體整數的集合.記作Z
(4)有理數集:全體有理數的集合.記作Q
。5)實數集:全體實數的集合.記作R
注:(1)自然數集包括數0.
(2)非負整數集內排除0的集.記作N*或N+,Q、Z、R等其它數集內排
除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z*
(二)集合的表示方法
我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。
。1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;
例1.(課本例1)
思考2,引入描述法
說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。
(2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。 具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;
例2.(課本例2)
說明:(課本P5最后一段)
思考3:(課本P6思考) 強調:描述法表示集合應注意集合的代表元素
{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。
說明:列舉法與描述法各有優點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。
(三)課堂練習(課本P6練習)
三、 歸納小結與作業
本節課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。
書面作業:習題1.1,第1- 4題
高中數學說課稿6
一、說教材:
1、教材的地位與作用
導數是微積分的核心概念之一,它為研究函數提供了有效的方法. 在前面幾節課里學生對導數的概念已經有了充分的認識,本節課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導數的幾何意義,更有利于學生理解導數概念的本質內涵. 這節課可以利用幾何畫板進行動畫演示,讓學生通過觀察、思考、發現、思維、運用形成完整概念. 通過本節的學習,可以幫助學生更好的體會導數是研究函數的單調性、變化快慢等性質最有效的工具,是本章的關鍵內容。
2、教學的重點、難點、關鍵
教學重點:導數的幾何意義、切線方程的求法以及“數形結合,逼近”的思想方法。
教學難點:理解導數的幾何意義的本質內涵
1) 從割線到切線的過程中采用的逼近方法;
2) 理解導數的概念,將多方面的意義聯系起來,例如,導數反映了函數f(x)在點x附近的變化快慢,導數是曲線上某點切線的斜率,等等.
二、說教學目標:
根據新課程標準的要求、學生的認知水平,確定教學目標如下:
1、知識與技能 :
通過實驗探求理解導數的幾何意義,理解曲線在一點的切線的概念,會求簡單函數在某點的切線方程。
過程與方法:
經歷切線定義的形成過程,培養學生分析、抽象、概括等思維能力;體會導數的思想及內涵,完善對切線的認識和理解
通過逼近、數形結合思想的具體運用,使學生達到思維方式的遷移,了解科學的思維方法。
3、情感態度與價值觀:
滲透逼近、數形結合、以直代曲等數學思想,激發學生學習興趣,引導學生領悟特殊與一般、有限與無限,量變與質變的辯證關系,感受數學的統一美,意識到數學的應用價值
三、說教法與學法
對于直線來說它的導數就是它的斜率,學生會很自然的思考導數在函數圖像上是不是有很特殊的幾何意義。而且剛剛學過了圓錐曲線,學生對曲線的切線的概念也有了一些認識,基于以上學情分析,我確定下列教法:
教法:從圓的切線的定義引入本課,再引導學生討論一般曲線的切線的定義,通過幾何畫板的動畫演示,得出曲線的切線的'“逼近”法的定義.同樣通過幾何畫板的實驗觀察得到導數的幾何意義和直觀感知“逼近”的數學思想.因此,我采用實驗觀察法、探究性研究教學和信息技術輔助教學法相結合,以突出重點和突破難點;
學法:為了發揮學生的主觀能動性,提高學生的綜合能力,本節課采取了
自主 、合作、探究的學習方法。
教具: 幾何畫板、幻燈片
四、說教學程序
1.創設情境
學生活動——問題系列
問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?
問題2 如圖直線l是曲線C的切線嗎?
(1)與 (2)與 還有直線與雙曲線的位置關系
問題3 那么對于一般的曲線,切線該如何定義呢?
【設計意圖】:通過類比構建認知沖突。
學生活動——復習回顧
導數的定義
【設計意圖】:從理論和知識基礎兩方面為本節課作鋪墊。
2.探索求知
學生活動——試驗探究
問一;求導數的步驟是怎樣的?
第一步:求平均變化率;第二步:當趨近于0時,平均變化率無限趨近于的常數就是。
【設計意圖】:這是從“數”的角度描述導數,為探究導數的幾何意義做準備。
問二;你能借助圖像說說平均變化率表示什么嗎?請在函數圖像中畫出來。
【設計意圖】:通過學生動手實踐得到平均變化率表示割線PQ的斜率。
問三;在的過程中,你能描述一下割線PQ的變化情況嗎?請在圖像中畫出來。
【設計意圖】:分別從“數”和“形”的角度描述的過程情況。從數的角度看,,Q();從形的角度看, 的過程中,Q點向P點無限趨近,割線PQ趨近于確定的位置,這個位置的直線叫做曲線在 處的切線。
探究一:學生通過幾何畫板的演示觀察割線的變化趨勢,教師引導給出一般曲線的切線定義。
【設計意圖】: 借助多媒體教學手段引導學生發現導數的幾何意義,使問題變得直觀,易于突破難點;學生在過程中,可以體會逼近的思想方法。能夠同時從數與形兩個角度強化學生對導數概念的理解。
問四;你能從上述過程中概括出函數在處的導數的幾何意義嗎?
【設計意圖】:引導學生發現并說出:,割線PQ切線PT,所以割線
PQ的斜率切線PT的斜率。因此,=切線PT的斜率。
五、教學評價
1、通過學生參加活動是否積極主動,能否與他人合作探索,對學生的學習過程評價;
2、通過學生對方法的選擇,對學生的學習能力評價;
3、通過練習、課后作業,對學生的學習效果評價.
4、教學中,學生以研究者的身份學習,在問題解決的過程中,通過自身的體驗對知識的認識從模糊到清晰,從直觀感悟到精確掌握;
5、本節課設計目標力求使學生體會微積分的基本思想,感受近似與精確的統一,運動和靜止的統一,感受量變到質變的轉化。希望利用這節課滲透辨證法的思想精髓.
高中數學說課稿7
我今天說課的課題是新課標高中數學人教版A版必修第二冊第三章“3.1.1傾斜角與斜率”。我說課的程序主要由說教材、說教法、說學法、說教學程序這四個部分組成。
一、說教材:
1、教材分析:直線的傾斜角和斜率是解析幾何的重要概念之一,也是直線的重要的幾何要素。學生在原有的對直線的有關性質及平面向量的相關知識理解的基礎上,重新以坐標化(解析化)的方式來研究直線相關性質,而本節直線的傾斜角與斜率,是直線的重要的幾何性質,是研究直線的方程形式,直線的位置關系等的思維的起點;另外,本節也初步向學生滲透解析幾何的基本思想和基本方法。因此,本節課的有著開啟全章,奠定基調,滲透方法,明確方向,承前啟后的作用。
2、教學目標
根據本課教材的特點,新大綱對本節課的教學要求,結合學生身心發展的合理需要,我從三個方面確定了以下教學目標:
。1)知識與技能目標:
了解直線的方程和方程的直線的概念;在新的問題的情境中,去主動構建理解直線的傾斜角和斜率的定義;初步感悟用代數方法解決幾何問題的思想方法。
。2)過程與方法目標:
引導學生觀察發現、類比,猜想和實驗探索,培養學生的創新能力和動手能力
。3)情感、態度與價值觀目標:
在平等的教學氛圍中,通過學生之間、師生之間的交流、合作和評價,實現共同探究、教學相長的教學情境。
3、教學重點、難點
。1)教學重點:理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線的斜率的計算公式。
。2)教學難點:斜率公式的推導
二、說教法
課堂教學應有利于學生的數學素質的形成與發展,即在課堂教學過程中,創設問題的情境,激發學生主動的發現問題解決問題,充分調動學生學習的主動性、積極性;有效地滲透數學思想方法,發展學生個性思維品質,這是本節課的教學原則。根據這樣的原則及所要完成的教學目標,我采用觀察發現、啟發引導、探索實驗相結合的`教學方法。啟發引導學生積極的思考并對學生的思維進行調控,使學生優化思維過程;在此基礎上,通過學生交流與合作,從而擴展自己的數學知識和使用數學知識及數學工具的能力,實現自覺地、主動地、積極地學習。
三、說學法
在實際教學中,根據學生對問題的感受程度不同,學習熱情、身心特點等,對學生進行針對性的學法指導。主要運用引導、啟發、情感暗示等隱性形式來影響學生,多提供機會讓學生去想、去做,給學生自己動手、參與教學過程、發現問題、討論問題提供了很好的機會。這不僅讓學生對所學內容留下了深刻的印象,而且能力得到培養,素質得以提高,充分地調動學生學習的熱情,讓學生學會學習,學會探索問題的方法,培養學生的能力。
四、說教學程序:
1、導入新課:
提出問題:如何確定一條直線的位置?
(1)兩點確定一條直線;
(2)一點能確定一條直線嗎?
過一點P可以作無數條直線,這些直線的傾斜程度不同,如何描述直線的傾斜程度?本節課將解決這個問題。
設計意圖:打開了學生的原有認知結構,為知識的創新做好了準備;同時也讓學生領會到,直線的傾斜角這一概念的產生是因為研究直線的需要,從而明確新課題研究的必要性,觸發學生積極思維活動的展開。
2、探究發現:
。1)直線的傾斜角:
有新課導入直接引出此概念,學生易于接受,但是容易忽視其中的重點字。因此重點強調定義的幾個注意點:①x軸正半軸;②直線向上方向;③當直線與x軸平行或重合時,直線的傾斜角為0度。由此得出直線傾斜角的取值范圍。
。2)直線的確定方法:
確定平面直角坐標系中一條直線位置的幾何要素:直線上的一個定點以及它的傾斜角,二者缺一不可。
。3)直線的斜率:
注:直線的傾斜角與斜率的區別:
所有的直線都有傾斜角;但是不是所有直線都有斜率(傾斜角為90°的直線沒有斜率,因為90°的正切不存在。)
(4)由兩點確定的直線的斜率:
先讓學生自主探究、學生之間互相交流,然后再由師生共同歸納得出結論:
經過兩點P1(x1.y1),P2(x2,y2)直線的斜率公式:(x1≠x2)。
3、學用結合:
。1)例題講解:P89-90/例題1和例題2。
例題的講解主要關注思路的點撥以及解題過程的規范書寫。
(2)課堂練習:
P91/練習第1、2題
4、總結歸納:
直線的傾斜角直線的斜率直線的斜率公式
定義
取值范圍
5、布置作業:P 91/練習第3、4題。
高中數學說課稿8
一、教材分析
本節內容是等差數列(第一課時)的內容,屬于數與代數領域的知識。本節是數列課程的新授課,為后面等比數列以及數列求和的知識點作基礎。數列是高中數學重要內容之一,它有著廣泛的實際應用。等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。在數學思想的方面,數列在處理數與數之間的關系中,更多地培養了學生運用函數與函數關系的思想。
二、教學目標
根據課程標準的要求和學生的實際水平,確定了本次課的教學目標
。1)在知識上:理解并掌握等差數列的概念;了解等差數列的通項公式的推導過程及思想。
。2)在能力上:培養學生觀察、分析、歸納、推理的能力;以形象的實際例子作為學生理解與練習的模板,使學生在不斷實踐中鞏固學習到的知識;通過階梯性練習,提高學生分析問題和解決問題的能力。
。3)在情感上:通過對等差數列在實際問題中的研究,培養學生主動探索、勇于發現的求知精神;養成細心觀察、認真分析、善于總結的良好思維習慣。
3、教學重點和難點
根據課程標準的要求我確定本節課的教學重點為: ①等差數列的概念。
、诘炔顢盗械耐椆降耐茖н^程及應用。
三、教學方法分析:
對于高中學生,知識經驗比較貧乏,雖然他們的智力發展已到了形式運演階段,但并不具備教強的抽象思維能力和演繹推理能力,所以本堂課將從實際中的問題出發,以學生日常生活中較易接觸的一些數學問題,籍此啟發學生對于數列知識點的理解。本節課大多采用啟發式、討論式的教學方法,通過問題激發學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題,并學會將數學知識運用到實際問題的解決中。
四、教學過程
通過復習上節課數列的定義來引入幾個數列
1)0,5,10,15,20,25.....2)18,15.5,13,10.5,8,4.5 3) 48,53,58,63,68.....通過這3個數列,初步認識等差數列的特征,為后面的概念學習建立基礎。由學生觀察第一個數列與第三個數列的特點,并與第二個做對比,引出等差數列的概念。
(二)新課探究
1、由引入自然的給出等差數列的概念:
定義:如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列,這個常數叫做等差數列的公差,通常用字母d來表示。強調:
、 “從第二項起”滿足條件;
、诠頳一定是由后項減前項所得;
、勖恳豁椗c它的前一項的差必須是同一個常數;
在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式:
an+1-an=d (n≥1)
同時為了配合概念的理解,引導學生講本不是等差數列的第二組數列修改成等差數列。并由觀察三組數列的不同特點,由此強調:公差可以是正數、負數,并再舉出特例數列1,1,1,1,1,1,1......說明公差也可以是0。
2、第二個重點部分為等差數列的通項公式
在歸納等差數列通項公式中,我采用討論式的教學方法。給出等差數列的首項,公差d,運用求數列通項公式的辦法------迭加法:整個過程通過互相討論的方式既培養了學生的協作意識又化解了教學難點。
若一等差數列{an }的首項是a1,公差是d,則據其定義可得:
a2 – a1 =d a3 – a2 =d a4 – a3 =d …… an – an-1=d將這(n-1)個等式左右兩邊分別相加,就可以得到an– a1= (n-1) d即an= a1+(n-1) d(1)
當n=1時,(1)也成立,
所以對一切n∈N﹡,上面的公式都成立
因此它就是等差數列{an}的通項公式。對照已歸納出的.通項公式啟發學生想出將n-1個等式相加。證出通項公式。
在這里通過運用迭加法這一數學思想,便于學生從概念理解的過程過渡到運用概念的過程。
接著舉例說明:若一個等差數列{an}的首項是1,公差是2,得出這個數列的通項公式是:an=1+(n-1)×2,
即an=2n-1以此來鞏固等差數列通項公式運用。
。ㄈ⿷门e例
現實生活中,以學生較為熟悉的iphone手機的數據作為例子。觀察Iphone手機的發布時間,iphone第一代發布于20xx年,第二代發布于20xx年,第三代發布于20xx年,第四代發布于20xx年,F在第六代發布于今年20xx年。首先,讓學生觀察從04年到10年每兩代iphone發布的間隔時間,讓學生自行尋找規律,并在此基礎上讓學生估測第五代iphone的發布時間,并驗證第五代iphone發布于20xx年。同時,再讓學生預測在未來,下一部iphone發布的時間,是學生體驗到將數學知識運用到實際中的方法與步驟。為了加深聯系,再給出了每代iphone的價格:iphone1 4299;iphone2 4800;iphone3 5299;iphone4 5988;iphone5 6300。在給出的數據上,將價格隨時間的變化以坐標軸的形式作圖表示出來,讓學生觀察到雖然這些數據非等差,但是可以大致變為等差的直線圖像,讓學生體會到“擬合數據”的思想。在此基礎上,讓學生進行練習,預測14年如今iphone6的上市價格為6888元,并與學生通過數列進行推理的價格進行對比,讓學生對自己在實踐中解決問題的過程中找到一定的認同感。
五、歸納小結
提問學生,總結這節課的收獲
1、等差數列的概念及數學表達式,并強調關鍵字:從第二項開始,它的每一項與前一項之差都等于同一常數。
2、等差數列的通項公式an= a1+(n-1) d
3、將讓學生在實踐中了解,將數列知識點運用到實際中的方法。
4、在課末提出啟發性問題,若是有人將每一部iphone都買入,那他一共花費了多少錢?借此引出了下一節,等差數列求和的知識點。讓學生嘗試自行去思考這樣的問題。
5、布置作業
高中數學說課稿9
一、教學背景分析
1、教材結構分析
《圓的方程》安排在高中數學第二冊(上)第七章第六節。圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用。圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用。
2、學情分析
圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的。但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難。另外學生在探究問題的能力,合作交流的意識等方面有待加強。
根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:
3、教學目標
(1) 知識目標:①掌握圓的標準方程;
、跁蓤A的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程;
③利用圓的標準方程解決簡單的實際問題。
(2) 能力目標:①進一步培養學生用代數方法研究幾何問題的能力;
②加深對數形結合思想的理解和加強對待定系數法的運用;
、墼鰪妼W生用數學的意識。
(3) 情感目標:①培養學生主動探究知識、合作交流的意識;
、谠隗w驗數學美的過程中激發學生的學習興趣。
根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:
4、教學重點與難點
(1)重點:圓的標準方程的求法及其應用。
(2)難點: ①會根據不同的已知條件求圓的標準方程;
、谶x擇恰當的坐標系解決與圓有關的實際問題。
為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析:
二、教法學法分析
1、教法分析 為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上。另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程。
2、學法分析 通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應用圓的標準方程,熟悉用待定系數法求的過程。
下面我就對具體的教學過程和設計加以說明:
三、教學過程與設計
整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節:
創設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高
反饋訓練 形成方法 小結反思 拓展引申
下面我從縱橫兩方面敘述我的教學程序與設計意圖。
首先:縱向敘述教學過程
(一)創設情境——啟迪思維
問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2。7m,高為3m的貨車能不能駛入這個隧道?
通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決。一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題。用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。
通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節。
(二)深入探究——獲得新知
問題二 1、根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
2、如果圓心在,半徑為時又如何呢?
這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程。然后再讓學生對圓心不在原點的情況進行探究。我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法。
得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節。
(三)應用舉例——鞏固提高
I、直接應用 內化新知
問題三 1、寫出下列各圓的標準方程:
(1)圓心在原點,半徑為3;
(2)經過點,圓心在點。
2、寫出圓的圓心坐標和半徑。
我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的`切線問題作準備。
II、靈活應用 提升能力
問題四 1、求以點為圓心,并且和直線相切的圓的方程。
2、求過點,圓心在直線上且與軸相切的圓的方程。
3、已知圓的方程為,求過圓上一點的切線方程。
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經過圓上一點的切線的方程是什么?
我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程。第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間。最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮。
III、實際應用 回歸自然
問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。
我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識。
(四)反饋訓練——形成方法
問題六 1、求過原點和點,且圓心在直線上的圓的標準方程。
2、求圓過點的切線方程。
3、求圓過點的切線方程。
接下來是第四環節——反饋訓練。這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果。
(五)小結反思——拓展引申
1、課堂小結
把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法
、賵A心為,半徑為r 的圓的標準方程為:
圓心在原點時,半徑為r 的圓的標準方程為:。
、谝阎獔A的方程是,經過圓上一點的切線的方程是:。
2、分層作業
(A)鞏固型作業:教材P81-82:(習題7。6)1,2,4。(B)思維拓展型作業:試推導過圓上一點的切線方程。
3、激發新疑
問題七 1、把圓的標準方程展開后是什么形式?
2、方程表示什么圖形?
在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了。在知識的拓展中再次掀起學生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。
以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計:
橫向闡述教學設計
(一)突出重點 抓住關鍵 突破難點
求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的同時突破了難點。
第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五。這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破。
(二)學生主體 教師主導 探究主線
本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終。從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的。另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務。
(三)培養思維 提升能力 激勵創新
為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力。在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行。
以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變。最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”。
高中數學說課稿10
一、教學背景分析
(一)教材地位分析:《橢圓及其標準方程》是繼學習圓以后運用“曲線與方程”思想解決二次曲線問題的又一實例,從知識上說,本節課是對坐標法研究幾何問題的又一次實際運用,同時也是進一步研究橢圓幾何性質的基礎;從方法上說,它為進一步研究雙曲線、拋物線提供了基本模式和理論基礎,因此本節課起到了承上啟下的重要作用、
(二)重點、難點分析:本節課的重點是橢圓的定義及其標準方程,標準方程的推導是本節課的難點,要突破這一難點,關鍵是引導學生正確選擇去根式的策略、
。ㄈ⿲W情分析:在學習本節課前,學生已經學習了直線與圓的方程,對曲線和方程的思想方法有了一些了解和運用的經驗,對坐標法研究幾何問題也有了初步的認識,因此,學生已經具備探究有關點的軌跡問題的知識基礎和學習能力,但由于學生學習解析幾何還不長、學習程度也較淺,并且還受到這一年齡段學習心理和認知結構的影響,在學習過程中難免會有些困難、如:由于學生對運用坐標法解決幾何問題掌握還不夠,因此從研究圓到橢圓,學生思維上會存在障礙、
二、教學目標設計
(一)知識目標:掌握橢圓的定義及其標準方程;會根據條件寫出橢圓的標準方程;通過對橢圓標準方程的探求,再次熟悉求曲線方程的一般方法、
。ǘ┠芰δ繕耍簩W生通過動手畫橢圓、分組討論探究橢圓定義、推導橢圓標準方程等過程,提高動手能力、學習能力和運用知識解決實際問題的能力、
(三)情感目標:在形成知識、提高能力的過程中,激發學生學習數學的興趣,提高學生的審美情趣,培養學生勇于探索、敢于創新的、
三、教法學法設計
。ㄒ唬┙虒W方法設計:為了更好地培養學生自主學習能力,提高學生的綜合素質,我主要采用探究式教學方法、一方面我通過設置情境、問題誘導充分發揮主導作用;另一方面學生通過對我提供的素材進行直觀觀察→動手操作→討論探究→歸納抽象→總結規律的過程充分體現主體地位、
使用多媒體輔助教學與自制教具相結合的設計,實現多媒體快捷、形象、大容量的優勢與自制教具直觀、的優勢的結合,既突出了知識的產生過程,又增加了課堂的趣味性、
1、掌握橢圓的定義,掌握橢圓標準方程的兩種形式及其推導過程;
2、能根據條件確定橢圓的標準方程,掌握運用待定系數法求橢圓的標準方程;
3、通過對橢圓概念的引入教學,培養學生的觀察能力和探索能力;
4、通過橢圓的標準方程的推導,使學生進一步掌握求曲線方程的一般方法,并滲透數形結合和等價轉化的思想方法,提高運用坐標法解決幾何問題的能力;
5、通過讓學生大膽探索橢圓的定義和標準方程,激發學生學習數學的積極性,培養學生的學習興趣和創新意識、
四、教學建議
教材分析
1、知識結構
2、重點難點分析
重點是橢圓的定義及橢圓標準方程的兩種形式、難點是橢圓標準方程的建立和推導、關鍵是掌握建立坐標系與根式化簡的方法。
橢圓及其標準方程這一節教材整體來看是兩大塊內容:一是橢圓的定義;二是橢圓的標準方程、橢圓是圓錐曲線這一章所要研究的三種圓錐曲線中首先遇到的,所以教材把對橢圓的研究放在了重點,在雙曲線和拋物線的教學中鞏固和應用、先講橢圓也與第七章的圓的方程銜接自然、學好橢圓對于學生學好圓錐曲線是非常重要的。
。1)對于橢圓的定義的理解,要抓住橢圓上的點所要滿足的條件,即橢圓上點的幾何性質,可以對比圓的定義來理解、
另外要注意到定義中對“常數”的限定即常數要大于、這樣規定是為了避免出現兩種特殊情況,即:“當常數等于時軌跡是一條線段;當常數小于時無軌跡”。這樣有利于集中精力進一步研究橢圓的標準方程和幾何性質、但講解橢圓的定義時注意不要忽略這兩種特殊情況,以保證對橢圓定義的準確性。
(2)根據橢圓的定義求標準方程,應注意下面幾點:
、偾的`方程依賴于坐標系,建立適當的坐標系,是求曲線方程首先應該注意的地方、應讓學生觀察橢圓的圖形或根據橢圓的定義進行推理,發現橢圓有兩條互相垂直的對稱軸,以這兩條對稱軸作為坐標系的兩軸,不但可以使方程的推導過程變得,而且也可以使最終得出的方程形式整齊和簡潔。
、谠O橢圓的焦距為,橢圓上任一點到兩個焦點的距離為,令,這些措施,都是為了簡化推導過程和最后得到的方程形式整齊、簡潔,要讓學生認真領會、
、墼诜匠痰耐茖н^程中遇到了無理方程的化簡,這既是我們今后在求軌跡方程時經常遇到的問題,又是學生的難點、要注意說明這類方程的化簡方法:①方程中只有一個根式時,需將它單獨留在方程的一側,把其他項移至另一側;②方程中有兩個根式時,需將它們分別放在方程的兩側,并使其中一側只有一項、
④教科書上對橢圓標準方程的推導,實際上只給出了“橢圓上點的坐標都適合方程“而沒有證明,”方程的解為坐標的點都在橢圓上”、這實際上是方程的同解變形問題,難度較大,對同學們不作要求。
。3)兩種標準方程的橢圓異同點
中心在原點、焦點分別在軸上,軸上的橢圓標準方程分別為:它們的相同點是:形狀相同、大小相同,都有,、不同點是:兩種橢圓相對于坐標系的位置不同,它們的焦點坐標也不同、橢圓的焦點在軸上標準方程中項的分母較大;橢圓的焦點在軸上標準方程中項的分母較大、另外,形如中,只要,同號,就是橢圓方程,它可以化為。
。4)教科書上通過例3介紹了另一種求軌跡方程的常用方法——中間變量法、例3有三個作用:是教給學生利用中間變量求點的軌跡的方法;第二是向學生說明,如果求得的點的軌跡的方程形式與橢圓的標準方程相同,那么這個軌跡是橢圓;第三是使學生知道,一個圓按某一個方向作伸縮變換可以得到橢圓。
高中數學說課稿11
一、教學目標
。1)知識與能力目標:學習橢圓的定義,掌握橢圓標準方程的兩種形式及其推
導過程;能根據條件確定橢圓的標準方程,掌握用待定系數法求橢圓的標準方程。
(2)過程與方法目標:通過對橢圓概念的引入教學,培養學生的觀察能力和探
索能力;通過對橢圓標準方程的推導,使學生進一步掌握求曲線方程的一般方法,提高學生運用坐標法解決幾何問題的能力,并滲透數形結合和等價轉化的數學思想方法。
。3)情感、態度與價值觀目標:通過讓學生大膽探索橢圓的定義和標準方程,激發學生學習數學的積極性,培養學生的學習興趣和創新意識,培養學生勇于探索的精神和滲透辯證唯物主義的方法論和認識論。
二、教學重點、難點
。1)教學重點:橢圓的定義及橢圓標準方程,用待定系數法和定義法求曲線方程。
。2)教學難點:橢圓標準方程的建立和推導。
三、教學過程
(一)創設情境,引入概念
1、動畫演示,描繪出橢圓軌跡圖形。
2、實驗演示。
思考:橢圓是滿足什么條件的點的軌跡呢?
(二)實驗探究,形成概念
1、動手實驗:學生分組動手畫出橢圓。
實驗探究:
保持繩長不變,改變兩個圖釘之間的距離,畫出的橢圓有什么變化?
思考:根據上面探究實踐回答,橢圓是滿足什么條件的點的軌跡?
2、概括橢圓定義
引導學生概括橢圓定義橢圓定義:平面內與兩個定點距離的和等于常數(大于)的點的軌跡叫橢圓。
教師指出:這兩個定點叫橢圓的焦點,兩焦點的距離叫橢圓的焦距。
思考:焦點為的橢圓上任一點M,有什么性質?
令橢圓上任一點M,則有
(三)研討探究,推導方程
1、知識回顧:利用坐標法求曲線方程的一般方法和步驟是什么?
2、研討探究
問題:如圖已知焦點為的橢圓,且=2c,對橢圓上任一點M,有
,嘗試推導橢圓的方程。
思考:如何建立坐標系,使求出的方程更為簡單?
將各組學生的討論方案歸納起來評議,選定以下兩種方案,由各組學生自己完成設點、列式、化簡。
方案一方案二
按方案一建立坐標系,師生研討探究得到橢圓標準方程
=1(),其中b2=a2-c2(b>0);
選定方案二建立坐標系,由學生完成方程化簡過程,可得出=1,同樣也有a2-c2=b2(b>0)。
教師指出:我們所得的兩個方程=1和=1()都是橢圓的標準方程。
(四)歸納概括,方程特征
1、觀察橢圓圖形及其標準方程,師生共同總結歸納
。1)橢圓標準方程對應的橢圓中心在原點,以焦點所在軸為坐標軸;
。2)橢圓標準方程形式:左邊是兩個分式的平方和,右邊是1;
(3)橢圓標準方程中三個參數a,b,c關系:;
。4)橢圓焦點的位置由標準方程中分母的大小確定;
。5)求橢圓標準方程時,可運用待定系數法求出a,b的值。
2、在歸納總結的基礎上,填下表
標準方程
圖形a,b,c關系焦點坐標焦點位置
在x軸上
在y軸上
(五)例題研討,變式精析
例1、求適合下列條件的橢圓的標準方程
(1)兩個焦點的坐標分別是,橢圓上一點P到兩焦點距離和等于10。
(2)兩焦點坐標分別是,并且橢圓經過點。
例2、(1)若橢圓標準方程為及焦點坐標。
。2)若橢圓經過兩點求橢圓標準方程。
(3)若橢圓的一個焦點是,則k的值為。
。ˋ)(B)8(C)(D)32
例3、如圖,已知一個圓的圓心為坐標原點,半徑為2,從這個圓上任意一點P向x軸作垂線段,求線段中點M的軌跡。
(六)變式訓練,探索創新
1、寫出適合下列條件的橢圓標準方程
(1),焦點在x軸上;
。2)焦點在x軸上,焦距等于4,并且經過點P;
2、若方程表示焦點在y軸上的`橢圓,則k的范圍。
3、已知B,C是兩個定點,周長為16,求頂點A的軌跡方程。
4、已知橢圓的焦距相等,求實數m的值。
5、在橢圓上上求一點,使它與兩個焦點連線互相垂直。
6、已知P是橢圓上一點,其中為其焦點且,求三解形面積。
(七)小結歸納,提高認識
師生共同歸納本節所學內容、知識規律以及所學的數學思想和方法。
(八)作業訓練,鞏固提高
課本第96頁習題§8。1第3題、第5題、第6題。
課后思考題:
1、知是橢圓的兩個焦點,AB是過的弦,則周長是。
。ˋ)2a(B)4a(C)8a(D)2a2b
2、的兩個頂點A,B的坐標分別是邊AC,BC所在直線的斜
率之積等于,求頂點C的軌跡方程。
2、與圓外切,同時與圓內切,求動圓圓心的軌跡方程,并說明它是什么樣的曲線?
教學設計說明
橢圓是圓錐曲線中重要的一種,本節內容的學習是后繼學習其它圓錐曲線的基礎,坐標法是解析幾何中的重要數學方法,橢圓方程的推導是利用坐標法求曲線方程的很好應用實例。本節課內容的學習能很好地在課堂教學中展現新課程的理念,主要采用學生自主探究學習的方式,使培養學生的探索精神和創新能力的教學思想貫穿于本節課教學設計的始終。
橢圓是生活中常見的圖形,通過實驗演示,創設生動而直觀的情境,使學生親身體會橢圓與生活聯系,有助于激發學生對橢圓知識的學習興趣;在橢圓概念引入的過程中,改變了直接給出橢圓概念和動畫畫出橢圓的方式,而采用學生動手畫橢圓并合作探究的學習方式,讓學生親身經歷橢圓概念形成的數學化過程,有利于培養學生觀察分析、抽象概括的能力。
橢圓方程的化簡是學生從未經歷的問題,方程的推導過程采用學生分組探究,師生共同研討方程的化簡和方程的特征,可以讓學生主體參與橢圓方程建立的具體過程,使學生真正了解橢圓標準方程的來源,并在這種師生嘗試探究、合作討論的活動中,使學生體會成功的快樂,提高學生的數學探究能力,培養學生獨立主動獲取知識的能力。
設計例題、習題的研討探究變式訓練,是為了讓學生能靈活地運用橢圓的知識解決問題,同時也是為了更好地調動、活躍學生的思維,發展學生數學思維能力,讓學生在解決問題中發展學生的數學應用意識和創新能力,同時培養學生大膽實踐、勇于探索的精神,開闊學生知識應用視野。
高中數學說課稿12
一、教材分析:
《向量的加法》是《必修》4第二章第二單元中"平面向量的線性運算"的第一節課。本節資料有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在"平面向量"及"空間向量"中有很重要的地位。
二、學情分析:
學生在上節課中學習了向量的定義及表示,相等向量,平行向量等概念,明白向量能夠自由移動,這是學習本節資料的基礎。學生對數的運算了如指掌,并且在物理中學過力的合成、位移的合成等矢量的加法,所以向量的加法可經過類比數的加法、以所學的物理模型為背景引入,這樣做有利于學生更好地理解向量加法的意義,準確把握兩個加法法則的特點。
三、教學目的:
1、經過對向量加法的探究,使學生掌握向量加法的概念,結合物理學實際理解向量加法的意義。能正確領會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。
2、在應用活動中,理解向量加法滿足交換律和結合律以及表述兩個運算律的幾何意義。掌握有特殊位置關系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。
3、經過本節的學習,培養學生類比、遷移、分類、歸納等數學方面的本事。
四、教學重、難點
重點:向量的加法法則。探究向量的加法法則并正確應用是本課的重點。兩個加法法則各有特點,聯系緊密,你中有我,我中有你,實質相同,可是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講資料,平行四邊形法則在本課中所占份量略少于三角形法則。
難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學生認識到三角形法則的實質是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構成三角形。
五、教學方法
本節采用以下教學方法:
1、類比:由數的加法運算類比向量的加法運算。
2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發現三角形法則適用于任意向量相加;經過圖形,觀察得出向量加法滿足交換律、結合律等,這些都體現探究式教學法的運用。
3、講解與練習:對兩個法則特點的分析,例題都采取了引導與講解的方法,學生課堂完成教材中的練習。
4、多媒體技術的運用,能直觀地表現向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。
六、數學思想的體現:
1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規定,這樣對任意向量的加法都做了討論,線索清楚。
2、類比思想:使之與數的加法進行類比,使學生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從比較中看出兩者的不一樣,效果較好。
3、歸納思想:主要體此刻以下三個環節:
、賹W完平行四邊形法則和三角形法則后,歸納總結,對不共線向量相加,兩個法則都能夠選用。
、谟晒簿向量的加法總結出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。
、蹖ο蛄考臃ǖ慕Y合律和探討中,又使學生發現了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環節中的運用,使得學生對兩個加法法則,尤其是三角形法則的理解,步步深入。
七、教學過程:
1、回顧舊知:本節要進行向量的平移,且對向量加法分共線與不共線兩種情景,所以要復習向量、相等向量、共線向量等概念,這些都是新課學習中必要的知識鋪墊。
2、引入新課:
。1)平行四邊形法則的引入。
學生在物理學中雖然接觸過位移的合成,可是并沒有構成三角形法則的概念;而對平行四邊形法則學生已學過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,可是物理中力的合成是在有相同的作用點的條件下合成的,引入到數學中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學生剛學完相等向量,對相等向量的概念還沒有深刻的認識,易產生誤解:表示兩個已知向量的有向線段的起點必須在一齊才能用平行四邊形法則,不在一齊不能用。這時要經過講解例1,使學生認識到能夠經過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。
設計意圖:本著從學生最熟悉、離學生最近的知識經驗為接入點,用學生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學生容易理解,也使學科間的滲透發揮了作用,加深了學生對向量加法的`平行四邊形法則的"起點相同"這一特點的認識,例1的講解使學生認識到當表示向量的有向線段的起點不在一齊時,須把起點移到一齊,至此才能使學生完成對平行四邊形法則理解真正到位。
。2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入。
所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學生也起到了示例的作用。于是前面的例1還能夠利用三角形法則來做。
這時,總結出兩個不共線向量求和時,平行四邊形法則與三角形法則都能夠用。
設計意圖:由平行四邊形法則的圖形引入三角形法則,能夠很清楚地使學生從向何意義上認識到兩個法則之間的密切聯系,理解它們的實質,并且銜接自然,能夠使學生比較地得出兩個法則的特點與實質,并對兩個法則的特點有較深刻的印象。
。3)共線向量的加法
方向相同的兩個向量相加,對學生來說較易完成,"將它們接在一齊,取它們的方向及長度之和,作為和向量的方向與長度。"引導學生分析作法,結果發現還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。
方向相反的兩個向量相加,對學生來說是個難點,首先從作圖上不明白怎樣做?墒菍W生學過有理數加法中的異號兩數相加:"異號兩數相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數的符號。"類比異號兩數相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由教師引導學生嘗試運用三角形法則去做,發現結論正確。
反思過程,學生自然會想到方向相同的兩個向量相加,類似于同號兩數相加。這說明兩個共線向量相加依然可用三角形法則經過以上幾個環節的討論,能夠作個簡單的小結:兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。
設計意圖:經過對共線向量加法的探討,拓寬了學生對三角形法則的認識,使得不一樣位置的向量相加都有了依據,并且采用類比的方法,使學生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,能夠化解難點。
。4)向量加法的運算律
、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結合三角
形法則得出,理解起來沒什么困難,再一次強化了學生對兩個法則特點及實質的認識。
、诮Y合律:結合律是經過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結果相同。
接下來是對應的兩個練習,運用交換律與結合律計算向量的和。
設計意圖:運算律的引入給加法運算帶來方便,從后面的練習中學生能夠體會到這點。由結合律還使學生發現,多個向量相加,同樣能夠運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最終一個向量的終點。這樣使學生明白,三角形法則適用于任意多個向量相加。
3、小結
先由學生小結,檢查學生對本課重要知識的認識,也給學生一個概括本節知識的機會,然后用課件展示小結資料,使學生印象更深。
。1)平行四邊形法則:起點相同,適用于不共線向量的求和。
(2)三角形法則首尾相接,適用于任意多個向量的求和。
(3)運算律
高中數學說課稿13
教學目標:
。1)至少掌握點到直線的距離公式的一種推導方法,能用公式來求點到直線距離。
(2)培養學生探究能力和由特殊到一般的研究問題的能力。
(3)認識事物(知識)之間相互聯系、互相轉化的辯證法思想,培養學生轉化的思想和綜合應用知識分析問題解決問題的能力。
。4)培養學生團隊合作精神,培養學生個性品質,培養學生勇于探究的科學精神。
教學重點:點到直線的距離公式推導及公式的應用
教學難點:點到直線的距離公式的推導
教學方法:啟發引導法、討論法
學習方法:任務驅動下的研究性學習
教學時間:45分鐘
教學過程:
1、教師提出問題,引發認知沖突(約5分鐘)
問題:假定在直角坐標系上,已知一個定點P(x0,y0)和一條定直線l:AxByC=0,那么如何求點P到直線l的距離d?請學生思考并回答。
學生1:先過點P作直線l的垂線,垂足為Q,則|PQ|就是點P到直線l的距離d;然后用點斜式寫出垂線方程,并與原直線方程聯立方程組,此方程組的解就是點Q的坐標;最后利用兩點間距離公式求出|PQ|。
接著,教師用投影出示下列5道題(嘗試性題組),請5位學生上黑板練習(第(4)題請一位運算能力強的同學,其余學生在下面自己練習,每做完一題立即講評):
(1)求P(1,2)到直線l:x=3的距離d;(答案:d=2)
。2)求P(x0,y0)到直線l:ByC=0(B≠0)的距離d;(答案:)
。3)求P(x0,y0)到直線l:AxC=0(A≠0)的距離d;(答案:)
。4)求P(6,7)到直線l:3x—4y5=0的距離d;(答案:d=1)
。5)求P(x0,y0)到直線l:AxByC=0(AB≠0)的距離d。
第(1)容易、(2)和(3)題雖然含有字母參數,但由于直線的位置比較特殊,學生不難得出正確結論;第(4)題雖然運算量較大,但按照剛才學生1回答的方法與步驟,也能順利解出正確答案;第(5)題雖然思路清晰,但由于字母參數過多、運算量太大行不通。學生們陷入了困境。
2、教師啟發引導,學生走出困境(約8分鐘)
教師:根據以上5位學生的運算結果,你能得到什么啟示?
學生2:當直線的位置比較特殊(水平或豎直)時,點到直線的距離容易求得,而當直線是傾斜位置時則較難;含有多個字母時雖然想起來思路很自然,但具體操作起來因計算量很大而無法得出結果。
教師:那么,練習(5)有沒有運算量小一點的推導方法呢?我們能不能根據剛才的第(2)、(3)的啟示,借助水平、豎直情形和平面幾何知識來解決傾斜即一般情況呢?請同學們思考。
學生3:能!如圖1,過點P作x、y軸的垂線分別交直線l于S、R,則由三角形面積公式可得
|PQ|=(|PR|·|PS|)/|RS|
教師:|PR|怎么求?|PS|又怎么求?
學生3:設R(x1,y0),則由Ax1By0C=0,
得x1=—(By0C)/A,
∴|PR|=|x0—x1|=|Ax0By0C|/|A|;
同理:|PS|=|Ax0By0C|/|B|。
教師:|RS|怎么求?
學生3:|RS|==(/|AB|)·|Ax0By0C|。
教師:|PQ|結果是什么?
學生3:|PQ|=。
教師:公式的這種推導方法是否需要作補充說明?
學生4:當A=0或B=0時,ΔPRS不存在,故應說明公式當A=0或B=0時是否適用?
由(2)、(3)檢驗可知公式依然成立,即公式對任意直線都適用。
3、教師提出問題,學生分組討論(約10分鐘)
教師:推導點到直線的距離公式的方法不少。前面我們學了函數、三角函數、向量、不等式等數學知識,你能用所學過的知識從不同角度、采用不同方法來推導這個公式嗎?請同學們先獨立思考,然后在小組上進行討論交流,由組長負責記錄。10分鐘后每組推選一名代表對本組找到的最好的一種推導方法通過實物投影進行"成果"交流。
學生們積極探討;教師來回巡視,回答各研究小組的詢問......
4、學生交流"成果",教師點評小結(約16分鐘)
經過約十分鐘的研討,各小組都找到了新的推導方法。于是教師請4名代表依次上講臺(讓準備成熟的先講),借助實物投影介紹本組的"成果"。由于時間關系,每組只要求講一種方法,用時不超過4分鐘,且各組的方法不能重復。
學生5:我們用的是"設而不求,整體代換"的數學思想。請看投影屏幕:
設Q的坐標為(x1,y1),則直線PQ的斜率k1=,又直線l的斜率k=—,于是由PQ⊥l得,k1k=—1即B(x1—x0)—A(y1—y0)=0①
又因為Ax1By1C=0,即Ax1By1=—C
兩邊同減Ax0By0得A(x1—x0)B(y1—y0)=—(Ax0By0C)②
于是①2②2得,(A2B2)[(x1—x0)2(y1—y0)2]=(Ax0By0C)2,
即(A2B2)d2=(Ax0By0C)2
所以d=。
教師:"設而不求,整體代換",真是奧妙無窮,這是解析幾何減少運算量的有效途徑,同時也體現了數學的內在美,妙不可言。
學生6:我們小組向大家介紹一種獨特的方法——向量法,請看投影屏幕:
如圖2,設T(x1,y1)為直線l上的任意一點,則Ax1By1C=0,=(x1—x0,y1—y0)
∵PQ⊥直線l,
∴平行于直線l的法向量=(A,B)
另設與的夾角為θ,則·=cosθ
即|A(x1—x0)B(y1—y0)|=|||cosθ|
即|Ax0By0C|=·d
∴d=。
教師:向量是數量與圖形的有機結合,解析幾何是用代數的方法解決幾何問題,兩者都體現了數形結合的思想,第三小組的推導方法證明了這一點,也再次說明了向量具有很強的實用性與工具性,用向量法解解析幾何題確實行之有效。
學生7::我們小組向大家介紹向量的另一種方法,妙用向量數量積的性質.請看投影屏幕:
如圖3,設垂足是點H(m,n),
直線l的法向量共線,
這是相當簡單的方法了。
教師:巧妙利用向量數量積的性質來求距離,簡直是"巧奪天工",與其他方法相比,這種方法有絕對優勢,我們必須重視對向量工具性的研究和應用。
學生8:剛才三個小組的證明方法確實精彩,我們也發現了一種巧妙的`方法,把它稱為"柯西不等式法",請看投影屏幕:
我們知道,P點到直線l的距離,實質上是點P與直線l上任意一點T的距離的最小值,于是我們設T(x1,y1)為直線l上的任一點(如圖2),則Ax1By1C=0,
而d=|PT|min,于是|PT|=
=×,
利用柯西不等式,便有|PT|≥=,
所以d=,此時,即PT垂直于直線l。
教師:這一證法果然十分巧妙,包含的數學思想十分豐富。由點到直線的距想到最小值,又由最小值想到不等式,在一步步"轉化"中問題得到圓滿解決。同時也體現了不等式的工具作用。
5、公式應用(學生練習,約3分鐘)
。1)求P(6,7)到直線l:3x—4y5=0的距離d。
。ㄖ苯哟降么鸢福篸=1,檢驗嘗試性題組第(4)的答案)
(2)求P(—1,1)到直線l:的距離d。
。ㄏ然本方程為一般式再代公式得答案:)
6、教師小結并布置作業(約1分鐘)
這節課我們學習了點到直線的距離公式,在公式的推導中學到了許多重要的數學思想和方法,感受到了數學的奧妙,也感受到了成功的喜悅。其實這個公式的推導方法不下十種,由于課堂上時間緊,許多同學有創造性的推導方法不能進行展示、交流,請同學們撰寫一篇題為《點到直線距離公式的多種推導方法》的數學小論文,作為本節課的作業,允許三到四人合作完成。
設計說明:
數學公式的教學應包含兩個部分:公式的推導和公式的運用。由于受應試教育的影響,前者往往被"輕描淡寫",而后者卻搞得"轟轟烈烈",這顯然與"重結論,但更重過程"的現代教育理念相違背。其實數學公式的推導都蘊含著豐富的數學思想和數學方法,誰忽視了這個"產生過程",誰就忽視了數學的"精髓",誰就忽視了學生探究性思維品質的培養。
這節課把研究性學習引入公式的教學,讓學生真正成為課堂的主人。在推導公式的過程中,學生通過克服困難的經歷,以及獲得成功的體驗,鍛煉了意志,增強了信心。其實所有公式的教學、定理的教學都應向這個方向努力。
數學教學,從根本上講就是提高學生的數學素質,提高學生的數學素質的有效途徑有二:其一,使學生善于總結,使零亂的知識系統化、綜合化;其二,使學生善于聯想,培養發散性思維。本節課使學會從不同的角度思考問題,加強知識間的聯系,正是鍛練、提高學生運用知識分析問題和解決問題的能力,從而提高數學素質。
通過公式求點到直線的距離并不困難,但這個公式的推導方法不下十種,且各種推導都蘊含著重要的數學思想、方法,由于課堂上時間緊,許多同學的有創造性的推導方法不能進行展示、交流,故課外請同學們撰寫一篇題為《點到直線距離公式的多種推導方法》的數學小論文作為本節課的作業?紤]到同學的個體差異,故允許三到四人合作完成。同時通過學生小論文的完成情況對這節課的教學效果作出評價。
本課設計有一定的彈性,實際教學中,學生想到的推導方法不一定是上述幾種,我將針對每一種方法的特點進行適當的點評。進行交流的學生不一定是四人,若時間不夠,公式應用留到下節課,本節課只完成公式推導。
高中數學說課稿14
一、教材分析
1.《指數函數》在教材中的地位、作用和特點
《指數函數》是人教版高中數學(必修)第一冊第二章“函數”的第六節內容,是在學習了《指數》一節內容之后編排的。通過本節課的學習,既可以對指數和函數的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數、對數函數尤其是利用互為反函數的圖象間的關系來研究對數函數的性質打下堅實的概念和圖象基礎,又因為《指數函數》是進入高中以后學生遇到的第一個系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學習基礎,所以《指數函數》不僅是本章《函數》的重點內容,也是高中學段的主要研究內容之一,有著不可替代的重要作用。
此外,《指數函數》的知識與我們的日常生產、生活和科學研究有著緊密的聯系,尤其體現在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現實意義。本節內容的特點之一是概念性強,特點之二是凸顯了數學圖形在研究函數性質時的重要作用。
2.教學目標、重點和難點
通過初中學段的學習和高中對集合、函數等知識的系統學習,學生對函數和圖象的關系已經構建了一定的認知結構,主要體現在三個方面:
知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡單的函數概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數初步轉化到從集合與對應的觀點來認識函數。
技能維度:學生對采用“描點法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質做好準備。
素質維度:由觀察到抽象的數學活動過程已有一定的體會,已初步了解了數形結合的思想。
鑒于對學生已有的知識基礎和認知能力的分析,根據《教學大綱》的要求,我確定本節課的教學目標、教學重點和難點如下:
(1)知識目標:
、僬莆罩笖岛瘮档母拍;
②掌握指數函數的圖象和性質;
、勰艹醪嚼弥笖岛瘮档母拍罱鉀Q實際問題;
(2)技能目標:
、贊B透數形結合的基本數學思想方法
、谂囵B學生觀察、聯想、類比、猜測、歸納的能力;
(3)情感目標:
、袤w驗從特殊到一般的學習規律,認識事物之間的普遍聯系與相互轉化,培養學生用聯系的觀點看問題②通過教學互動促進師生情感,激發學生的學習興趣,提高學生抽象、概括、分析、綜合的能力
、垲I會數學科學的應用價值。
(4)教學重點:指數函數的圖象和性質。
(5)教學難點:指數函數的圖象性質與底數a的關系。
突破難點的關鍵:尋找新知生長點,建立新舊知識的聯系,在理解概念的基礎上充分結合圖象,利用數形結合來掃清障礙。
二、教法設計
由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過這一節課的教學達到不僅使學生初步理解并能簡單應用指數函數的知識,更期望能引領學生掌握研究初等函數圖象性質的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學生學習能力的目的,我根據自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:
1.創設問題情景.按照指數函數的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。
2.強化“指數函數”概念.引導學生結合指數的有關概念來歸納出指數函數的定義,并向學生指出指數函數的'形式特點,請學生思考對于底數a是否需要限制,如不限制會有什么問題出現,這樣避免了學生對于底數a范圍分類的不清楚,也為研究指數函數的圖象做了“分類討論”的鋪墊。
3.突出圖象的作用.在數學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數學家曾經說過“數離形時少直觀,形離數時難入微”,而在研究指數函數的性質時,更是直接由圖象觀察得出性質,因此圖象發揮了主要的作用。
4.注意數學與生活和實踐的聯系.數學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關的生活問題,力圖使學生了解到數學的基礎學科作用,培養學生的數學應用意識。
三、學法指導
本節課是在學習完“指數”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:
1.再現原有認知結構。在引入兩個生活實例后,請學生回憶有關指數的概念,幫助學生再現原有認知結構,為理解指數函數的概念做好準備。
2.領會常見數學思想方法。在借助圖象研究指數函數的性質時會遇到分類討論、數形結合等基本數學思想方法,這些方法將會貫穿整個高中的數學學習。
3.在互相交流和自主探究中獲得發展。在生活實例的課堂導入、指數函數的性質研究、例題與訓練、課內小節等教學環節中都安排了學生的討論、分組、交流等活動,讓學生變被動的接受和記憶知識為在合作學習的樂趣中主動地建構新知識的框架和體系,從而完成知識的內化過程。
4.注意學習過程的循序漸進。在概念、圖象、性質、應用、拓展的過程中按照先易后難的順序層層遞進,讓學生感到有挑戰、有收獲,跳一跳,夠得著,不同難度的題目設計將盡可能照顧到課堂學生的個體差異。
四、程序設計
在設計本節課的教學過程中,本著遵循學生的認知規律、讓學生去經歷知識的形成與發展過程的原則,我設計了如下的教學程序,啟發學生逐步發現和認識指數函數的圖象和性質。
1.創設情景、導入新課
教師活動:
、儆秒娔X展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞分裂的例子,
、趯W生按奇數列、偶數列分組。
學生活動:
、俜謩e寫出計算機價格y與經過月份x的關系式和細胞個數y與分裂次數x的關系式,并互相交流;
、诨貞浿笖档母拍;
③歸納指數函數的概念;
、芊治龀鰧χ笖岛瘮档讛涤懻摰谋匾砸约胺诸惖姆椒ā
設計意圖:通過生活實例激發學生的學習動機,,掃清由概念不清而造成的知識障礙,培養學生思維的主動性, 為突破難點做好準備;
2.啟發誘導、探求新知
教師活動:
、俳o出兩個簡單的指數函數并要求學生畫它們的圖象②在準備好的小黑板上規范地畫出這兩個指數函數的圖象③板書指數函數的性質。
學生活動:
、佼嫵鰞蓚簡單的指數函數圖象
②交流、討論
、蹥w納出研究函數性質涉及的方面
、芸偨Y出指數函數的性質。
設計意圖:讓學生動手作簡單的指數函數的圖象對深刻理解本節課的內容有著一定的促進作用,在學生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進一步規范學生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情況,學生就會很自然的通過觀察圖象總結出指數函數的性質,同時對于底數的討論也就變得順理成章。
3.鞏固新知、反饋回授
教師活動:
、侔鍟1
、诎鍟2第一問
、劢榻B有關考古的拓展知識。
高中數學說課稿15
各位同仁,各位專家:
我說課的課題是《任意角的三角函數》,內容取自蘇教版高中實驗教科書《數學》第四冊 第1。2節
先對教材進行分析
教學內容:任意角三角函數的定義、定義域,三角函數值的符號。
地位和作用: 任意角的三角函數是本章教學內容的基本概念對三角內容的整體學習至關重要。同時它又為平面向量、解析幾何等內容的學習作必要的準備,通過這部分內容的學習,又可以幫助學生更加深入理解函數這一基本概念。所以這個內容要認真探討教材,精心設計過程。
教學重點:任意角三角函數的定義
教學難點:正確理解三角函數可以看作以實數為自變量的函數、初中用邊長比值來定義轉變為坐標系下用坐標比值定義的觀念的轉換以及坐標定義的合理性的理解;
學情分析:
學生已經掌握的內容,學生學習能力
1。初中學生已經學習了基本的銳角三角函數的定義,掌握了銳角三角函數的一些常見的.知識和求法。
2。我們南山區經過多年的初中課改,學生已經具備較強的自學能力,多數同學對數學的學習有相當的興趣和積極性。
3。在探究問題的能力,合作交流的意識等方面發展不夠均衡,尚有待加強必須在老師一定的指導下才能進行
針對對教材內容重難點的和學生實際情況的分析我們制定教學目標如下
知識目標:
。1)任意角三角函數的定義;三角函數的定義域;三角函數值的符號,
能力目標:
。1)理解并掌握任意角的三角函數的定義;
(2)正確理解三角函數是以實數為自變量的函數;
。3)通過對定義域,三角函數值的符號的推導,提高學生分析探究解決問題的能力。
德育目標:
。1)學習轉化的思想,(2)培養學生嚴謹治學、一絲不茍的科學精神;
針對學生實際情況為達到教學目標須精心設計教學方法
教法學法:溫故知新,逐步拓展
。1)在復習初中銳角三角函數的定義的基礎上一步一步擴展內容,發展新知識,形成新的概念;
(2)通過例題講解分析,逐步引出新知識,完善三角定義
運用多媒體工具
(1)提高直觀性增強趣味性。
教學過程分析
總體來說, 由舊及新,由易及難,
逐步加強,逐步推進
先由初中的直角三角形中銳角三角函數的定義
過度到直角坐標系中銳角三角函數的定義
再發展到直角坐標系中任意角三角函數的定義
給定定義后通過應用定義又逐步發現新知識拓展完善定義。
具體教學過程安排
引入: 復習提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?
由學生回答
SinA=對邊/斜邊=BC/AB
cosA=對邊/斜邊=AC/AB
tanA=對邊/斜邊=BC/AC
逐步拓展:在高中我們已經建立了直角坐標系, 把“定義媒介”從直角三角形改為平面直角坐標系。
我們知道,隨著角的概念的推廣,研究角時多放在直角坐標系里, 那么三角函數的定義能否也放到坐標系去研究呢?
引導學生發現B的坐標和邊長的關系。進一步啟發他們發現由于相似三角形的相似比導致OB上任一P點都可以代換B,把三角函數的定義發展到用終邊上任一點的坐標來表示, 從而銳角三角函數可以使用直角坐標系來定義,自然地,要想定義任意一個角三角函數,便考慮放在直角坐標中進行合理進行定義了
從而得到
知識點一:任意一個角的三角函數的定義
提醒學生思考:由于相似比相等,對于確定的角A ,這三個比值的大小和P點在角的終邊上的位置無關。
精心設計例題,引出新內容深化概念,完善定義
例1已知角A 的終邊經過P(2,—3),求角A的三個三角函數值
。ù祟}由學生自己分析獨立動手完成)
例題變式1,已知角A 的大小是30度,由定義求角A的三個三角函數值
結合變式我們發現三個三角函數值的大小與角的大小有關,只會隨角的大小而變化,符合當初函數的定義,而我們又一直稱呼為三角函數,
提出問題:這三個新的定義確實問是函數嗎?為什么?
從而引出函數極其定義域
由學生分析討論,得出結論
知識點二:三個三角函數的定義域
同時教師強調:由于弧度制使角和實數建立了一一對應關系,所以三角函數是以實數為自變量的函數
例題變式2, 已知角A 的終邊經過P(—2a,—3a)( a不為0),求角A的三個三角函數值
解答中需要對變量的正負即角所在象限進行討論, 讓學生意識到三角函數值的正負與角所在象限有關,從而導出第三個知識點
知識點三:三角函數值的正負與角所在象限的關系
由學生推出結論,教師總結符號記憶方法,便于學生記憶
例題2:已知A在第二象限且 sinA=0。2 求cosA,tanA
求cosA,tanA
綜合練習鞏固提高,更為下節的同角關系式打下基礎
拓展,如果不限制A的象限呢,可以留作課外探討
小結回顧課堂內容
課堂作業和課外作業以加強知識的記憶和理解
課堂作業P16 1,2,4
。▽W生演板,后集體討論修訂答案同桌討論,由學生回答答案)
課后分層作業(有利于全體學生的發展)
必作P23 1(2),5(2),6(2)(4) 選作P23 3,4
板書設計(見PPT)
【高中數學說課稿】相關文章:
高中數學經典說課稿11-25
高中數學的說課稿04-19
高中數學向量說課稿09-09
高中數學數列說課稿11-20
高中數學《集合》說課稿07-22
高中數學的說課稿范文12-11
高中數學說課稿12-12
高中數學數列說課稿06-07
高中數學優秀說課稿03-08
高中數學說課稿06-12