1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中理科數學學習方法

        時間:2022-07-14 02:40:07 學習方法 我要投稿
        • 相關推薦

        高中理科數學學習方法

          數學的三大特點: 嚴謹性、抽象性、廣泛的應用性。以下是小編精心準備的高中理科數學學習方法,大家可以參考以下內容哦!

        高中理科數學學習方法

          篇【1】:高中理科數學學習方法

          高二數學的考察主要還是基礎知識,難題也不過是在簡單題的基礎上加以綜合。所以課本上的內容是很重要的,如果課本上的知識都不能掌握,就沒有觸類旁通的資本。

          對課本上的內容,上課之前最好能夠首先預習一下,否則上課時有一個知識點沒有跟上老師的步驟,下面的就不知所以然了,如此惡性循環,就會開始厭煩數學,對學習來說興趣是很重要的。課后針對性的練習題一定要認真做,不能偷懶,也可以在課后復習時把課堂例題反復演算幾遍,畢竟上課的時候,是老師在進行題目的演算和講解,學生在聽,這是一個比較機械、比較被動的接受知識的過程。也許你認為自己在課堂上聽懂了,但實際上你對于解題方法的理解還沒有達到一個比較深入的程度,并且非常容易忽視一些真正的解題過程中必定遇到的難點!昂媚X子不如賴筆頭”。對于數理化題目的解法,光靠腦子里的大致想法是不夠的,一定要經過周密的筆頭計算才能夠發現其中的.難點并且掌握化解方法,最終得到正確的計算結果。

          其次是要善于總結歸類,尋找不同的題型、不同的知識點之間的共性和聯系,把學過的知識系統化。舉個具體的例子:高一代數的函數部分,我們學習了指數函數、對數函數、冪函數、三角函數等好幾種不同類型的函數。但是把它們對比著總結一下,你就會發現無論哪種函數,我們需要掌握的都是它的表達式、圖象形狀、奇偶性、增減性和對稱性。那么你可以將這些函數的上述內容制作在一張大表格中,對比著進行理解和記憶。在解題時注意函數表達式與圖形結合使用,必定會收到好得多的效果。

          最后就是要加強課后練習,除了作業之外,找一本好的參考書,盡量多做一下書上的練習題(尤其是綜合題和應用題)。熟能生巧,這樣才能鞏固課堂學習的效果,使你的解題速度越來越快。

          篇【2】:高中理科數學學習方法

          一、數學的特點

          數學的三大特點: 嚴謹性、抽象性、廣泛的應用性

          所謂數學的嚴謹性,指數學具有很強的邏輯性和較高的精通性,一般以公理化體系來體現。

          什么是公理化體系呢?指得是選用少數幾個不加定義的概念和不加邏輯證明的命題為基礎,推出一些定理,使之成為數學體系,在這方面,古希臘數學家歐幾里得是個典范,他所著的《幾何原本》就是在幾個公理的基礎上研究了平面幾何中的大多數問題。在這里,哪怕是最基本的常用的原始概念都不能直觀描述,而要用公理加以確認或證明。

          中學數學和數學科學在嚴謹性上還是有所區別的,如,中學數學中的數集的不斷擴充,針對數集的運算律的擴充并沒有進行嚴謹的推證,而是用默認的方式得到,從這一點看來,中學數學在嚴謹性上還是要差很多,但是,要學好數學卻不能放松嚴謹性的要求,要保證內容的科學性。

          比如,等差數列的通項是通過前若干項的遞推從而歸納出通項公式,但要予以確認,還需要用數學歸納法進行嚴格的證明。

          數學的抽象性表現在對空間形式和數量關系這一特性的抽象。它在抽象過程中拋開較多的事物的具體的特性,因而具有十分抽象的形式。它表現為高度的.概括性,并將具體過程符號化,當然,抽象必須要以具體為基礎。

          至于數學的廣泛的應用性,更是盡人皆知的。只是在以往的教學、學習中,往往過于注重定理、概念的抽象意義,有時卻拋卻了它的廣泛的應用性,如果把抽象的概念、定理比作骨骼,那么數學的廣泛應用就好比血肉,缺少哪一個都將影響數學的完整性。高中數學新教材中大量增加數學知識的應用和研究性學習的篇幅,就是為了培養同學們應用數學解決實際問題的能力。

          我們來看看一個生活中有趣的問題。

          在任何一次集會中,握過奇數次手的人必有偶數個,試證明。

          如果抓住兩個關鍵:一是握手總次數必為偶數,

          二、高中數學的特點

          往往有同學進入高中以后不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。為什么會這樣呢?讓我們先看看高中數學和初中數學有些什么樣的轉變吧。

          1.理論加強 2.課程增多 3.難度增大 4.要求提高

          三、掌握數學思想

          高中數學從學習方法和思想方法上更接近于高等數學。學好它,需要我們從方法論的高度來掌握它。我們在研究數學問題時要經常運用唯物辯證的思想去解決數學問題。數學思想,實質上就是唯物辯證法在數學中的運用的反映。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,初步公理化思想,數形結合思想,運動思想,轉化思想,變換思想。

          例如,數列、一次函數、解析幾何中的直線幾個概念都可以用函數(特殊的對應)的概念來統一。又比如,數、方程、不等式、數列幾個概念也都可以統一到函數概念。

          再看看下面這個運用“矛盾”的觀點來解題的例子。

          已知動點Q在圓x2+y2=1上移動,定點P(2,0),求線段PQ中點的軌跡。

          分析此題,圖中P、Q、M三點是互相制約的,而Q點的運動將帶動M點的運動;主要矛盾是點Q的運動,而點Q的運動軌跡遵循方程x02+y02=1①;次要矛盾關系:M是線段PQ的中點,可以用中點公式將M的坐標(x,y)用點Q的坐標表示出來。

          x=(x0+2)/2 ②

          y=y0/2 ③

          顯然,用代入的方法,消去題中的x0、y0就可以求得所求軌跡。

          數學思想方法與解題技巧是不同的,在證明或求解中,運用歸納、演繹、換元等方法解題問題可以說是解題的技術性問題,而數學思想是解題時帶有指導性的普遍思想方法。在解一道題時,從整體考慮,應如何著手,有什么途徑?就是在數學思想方法的指導下的普遍性問題。

          有了數學思想以后,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。只有在解題思想的指導下,靈活地運用具體的解題方法才能真正地學好數學,僅僅掌握具體的操作方法,而沒有從解題思想的角度考慮問題,往往難于使數學學習進入更高的層次,會為今后進入大學深造帶來很有麻煩。

          在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。

          要打贏一場戰役,不可能只是勇猛沖殺、一不怕死二不怕苦就可以打贏的,必須制訂好事關全局的戰術和策略問題。解數學題時,也要注意解題思維策略問題,經常要思考:選擇什么角度來進入,應遵循什么原則性的東西。一般地,在解題中所采取的總體思路,是帶有原則性的思想方法,是一種宏觀的指導,一般性的解決方案。

          中學數學中經常用到的數學思維策略有:

          以簡馭繁、數形結全、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔

          如果有了正確的數學思想方法,采取了恰當的數學思維策略,又有了豐富的經驗和扎實的基本功,一定可以學好高中數學。

        【高中理科數學學習方法】相關文章:

        高中理科的學習方法總結12-05

        高中理科學習方法11-14

        高中理科高效學習方法08-06

        理科數學學習方法01-27

        高中理科學習方法總結06-14

        高中理科生學習方法07-24

        高中理科學習方法大全07-26

        高中理科學習方法5篇11-14

        理科數學學習方法6篇01-27

        高中理科生高效的學習方法總結10-14

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>