1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 五年級數學學習方法

        時間:2021-12-29 16:04:25 學習方法 我要投稿

        五年級數學學習方法5篇

          在我們平凡的日常里,大家只有不斷學習才能不斷進步,正確的學習方法,能夠讓我們學習事半功倍!那么,應該怎樣學習呢?以下是小編收集整理的五年級數學學習方法,僅供參考,歡迎大家閱讀。

        五年級數學學習方法5篇

        五年級數學學習方法1

          主動預習

          主動預習,不僅能提前了解上課內容,在聽課的時候有的放矢,還能鍛煉孩子的自學能力。

          具體做法:認真閱讀教材,在老師的引導下學會看書,帶著老師精心設計的思考題去預習。

          如自學例題時,要弄清例題講的什么內容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒有新的解法,解題步驟是怎樣的。

          抓住這些重要問題,動腦思考,步步深入,學會運用已有的知識去獨立探究新的知識。

          掌握思考問題的方法

          “把一個長方體的高去掉2厘米后成為一個正方體,他的表面積減少了48平方厘米,這個正方體的體積是多少?”

          一些學生對公式、性質、法則等背的挺熟,但遇到實際問題時,卻又無從下手,不知如何應用所學的知識去解答問題,比如上題。

          同學們對求體積的公式雖記得很熟,但由于該題涉及知識面廣,許多同學理不出解題思路,這需要學生在老師的引導下逐漸掌握解題時的思考方法。

          這道題從單位上講,涉及到長度單位、面積單位;從圖形上講,涉及到長方形、正方形、長方體、正方體;從圖形變化關系講:長方形→正方形;

          從思維推理上講:長方體→減少一部分底面是正方形的長方體→減少部分四個面面積相等→求一個面的面積→求出長方形的長(即正方形的一個棱長)→正方體的體積,

          經老師啟發,學生分析后,學生根據其思路(可畫出圖形)進行解答。

          有的學生很快解答出來:設原長方體的底面長為X,則2X×4=48得:X=6(即正方體的棱長),這樣得出正方體的體積為:6×6×6=216(立方厘米)。

          掌握思考問題的方法

          解答數學問題總的講是有規律可循的。在解題時,要注意總結解題規律,在解決每一道練習題后,要注意回顧以下問題:

          (1)本題最重要的特點是什么?

          (2)解本題用了哪些基本知識與基本圖形?

          (3)本題你是怎樣觀察、聯想、變換來實現轉化的?

          (4)解本題用了哪些數學思想、方法?

          (5)解本題最關鍵的一步在那里?

          (6)你做過與本題類似的題目嗎?在解法、思路上有什么異同?

          (7)本題你能發現幾種解法?其中哪一種?那種解法是特殊技巧?

          你能總結在什么情況下采用嗎?把這一連串的問題貫穿于解題各環節中,逐步完善,持之以恒,學生解題的心理穩定性和應變能力就可以不斷提高,思維能力就會得到鍛煉和發展。

        五年級數學學習方法2

          1、合理安排學習計劃

          根據小升初的形勢,六年級寒假就應該是綜合復習的時候。這樣從三年級暑假開始算起,到六年級寒假只有兩年半的時間。我們建議學生在兩年半時間里一定要扎實學習奧數知識。整個學習過程要按梯度進行,切莫一味做難題,根據學生學習情況,一步一個臺階。兼顧競賽、仁華、重點學校培訓班,早做規劃,早做準備。

          2、鞏固基礎知識

          由于還有一年就要轉入小升初的復習階段,所以五年級之前的奧數基礎內容一定要掌握好。之前的奧數內容以應用題、計算為主。對于基本應用題建議利用方程的方法求解,可以達到事半功倍的效果。計算問題需要對基本的簡算方法了如指掌,因為這些方法也是以后分數計算和綜合混合運算的基礎。

          3、多做專題練習

          五年級是接觸專題最多的時期,小學階段的重要知識點和難點也都集中在這個階段。其中數論、行程問題、排列組合是重中之重,如果這幾個專題掌握的不好,想上一個理想的中學是非常困難的。做專題練習也不能光看做了多少道題,要保證練一道會一道,真正的理解并掌--

          握所做的題目,日積月累,幾個重點難點也就不再是老大難問題了。

        五年級數學學習方法3

          天津奧數網 五年級是接觸專題最多的時期,小學階段的重要知識點和難點也都集中在這個階段,專題的練習有助于知識點和難點的鞏固和加強;真題的練習可以為你積累豐富的實戰經驗。

          五年級的孩子可以嘗試參加考試和比賽,獲獎對于孩子來說是一個莫大的激勵,能夠促使他們在奧數學習上興趣倍增,為以后取得更多的證書以及,奠定堅實的基礎。

          爬坡攻堅階段

          五年級是一個奧數學習的爬坡階段。如果在這個階段對奧數進行系統學習,哪怕之前都沒怎么接觸奧數的孩子,其數學成績可能有很大幅度的提高。下面我就來說說剛剛接觸奧數的同學該怎么學。

          由簡單入手

          五年級是有余力進行額外學習的,但是如果之前沒接觸過奧數,那么還是從簡單入手比較好。一則讓孩子通過簡單問題逐漸熟悉奧數,一則培養孩子的奧數興趣,避免接觸難題打消學習積極性。

          要迅速過渡

          五年級的學生是屬于小學的高年級階段,雖然是最初接觸奧數,也不必按部就班的學。應該輔助一定的練習對幾種類型題和專題進行深入分析了理解,掌握專題的解題思路,做到以點概面,迅速過渡到高年級奧數的學習。

          制定學習計劃

          所謂系統學習,決不是拿過哪塊來就學習哪塊,必須要有一個合理的學習計劃。通過一段時間簡單的學習,家長應注意了解孩子的學習進度,幫助孩子制定一份大體的學習計劃。然后嚴格按照計劃進行系統學習。

          重視基礎

          奧數是的競爭資本之一。其中大部分重點中學的奧數測試比較重視奧數的基礎。而杯賽也基本都是在奧數基礎上進行的延伸。所以不論是從的角度還是從提高自身能力的角度考慮,五年級學生都應該重視奧數基礎部分。

          量變到質變

          學習到一定階段之后,也要注重孩子思維方法的培養了,不能總是停留在解題這個階段。要綜合各個題型進行分析學習,通過知識的了解上升到方法的拓展,再到掌握方法舉一反三,實現一個質的飛躍!

        五年級數學學習方法4

          小學五年級數學學習方法五條

          主動預習

          主動預習,不僅能提前了解上課內容,在聽課的時候有的放矢,還能鍛煉孩子的自學能力。

          具體做法:認真閱讀教材,在老師的引導下學會看書,帶著老師精心設計的思考題去預習。

          如自學例題時,要弄清例題講的什么內容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒有新的解法,解題步驟是怎樣的。

          抓住這些重要問題,動腦思考,步步深入,學會運用已有的知識去獨立探究新的知識。

          掌握思考問題的方法

          “把一個長方體的高去掉2厘米后成為一個正方體,他的表面積減少了48平方厘米,這個正方體的體積是多少?”

          一些學生對公式、性質、法則等背的挺熟,但遇到實際問題時,卻又無從下手,不知如何應用所學的知識去解答問題,比如上題。

          同學們對求體積的公式雖記得很熟,但由于該題涉及知識面廣,許多同學理不出解題思路,這需要學生在老師的引導下逐漸掌握解題時的思考方法。

          這道題從單位上講,涉及到長度單位、面積單位;從圖形上講,涉及到長方形、正方形、長方體、正方體;從圖形變化關系講:長方形→正方形;

          從思維推理上講:長方體→減少一部分底面是正方形的長方體→減少部分四個面面積相等→求一個面的面積→求出長方形的長(即正方形的一個棱長)→正方體的體積,

          經老師啟發,學生分析后,學生根據其思路(可畫出圖形)進行解答。

          有的學生很快解答出來:設原長方體的底面長為X,則2X×4=48得:X=6(即正方體的棱長),這樣得出正方體的體積為:6×6×6=216(立方厘米)。

          小學五年級數學解題技巧

          1、對照法

          如何正確地理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。

          這個方法的思維意義就在于,訓練學生對數學知識的正確理解、牢固記憶、準確辨識。

          例1:三個連續自然數的和是18,則這三個自然數從小到大分別是多少?

          對照自然數的概念和連續自然數的性質可以知道:三個連續自然數和的平均數就是這三個連續自然數的中間那個數。

          例2:判斷題:能被2除盡的數一定是偶數。

          這里要對照“除盡”和“偶數”這兩個數學概念。只有這兩個概念全理解了,才能做出正確判斷。

          2、公式法

          運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,并能準確運用。

          例3:計算59×37+12×59+59

          59×37+12×59+59

          =59×(37+12+1)…………運用乘法分配律

          =59×50…………運用加法計算法則

          =(60-1)×50…………運用數的組成規則

          =60×50-1×50…………運用乘法分配律

          =3000-50…………運用乘法計算法則

          =2950…………運用減法計算法則

          3、比較法

          通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。

          比較法要注意:

          (1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。

          (2)找聯系與區別,這是比較的'實質。

          (3)必須在同一種關系下(同一種標準)進行比較,這是“比較”的基本條件。

          (4)要抓住主要內容進行比較,盡量少用“窮舉法”進行比較,那樣會使重點不突出。

          (5)因為數學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。

          例4:填空:0.75的位是(),這個數小數部分的位是();十分位的數4與十位上的數4相比,它們的()相同,()不同,前者比后者小了()。

          這道題的意圖就是要對“一個數的位和小數部分的位的區別”,還有“數位和數值”的區別等。

          例5:六年級同學種一批樹,如果每人種5棵,則剩下75棵樹沒有種;如果每人種7棵,則缺少15棵樹苗。六年級有多少學生?

          這是兩種方案的比較。相同點是:六年級人數不變;相異點是:兩種方案中的條件不一樣。

          找聯系:每人種樹棵數變化了,種樹的總棵數也發生了變化。

          找解決思路(方法):每人多種7-5=2(棵),那么,全班就多種了75+15=90(棵),全班人數為90÷2=45(人)。

          4、分類法

          根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。

          分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復、不遺漏、不交叉。

          例6:自然數按約數的個數來分,可分成幾類?

          答:可分為三類。(1)只有一個約數的數,它是一個單位數,只有一個數1;(2)有兩個約數的,也叫質數,有無數個;(3)有三個約數的,也叫合數,也有無數個。

          5、分析法

          把整體分解為部分,把復雜的事物分解為各個部分或要素,并對這些部分或要素進行研究、推導的一種思維方法叫做分析法。

          依據:總體都是由部分構成的。

          思路:為了更好地研究和解決總體,先把整體的各部分或要素割裂開來,再分別對照要求,從而理順解決問題的思路。

          也就是從求解的問題出發,正確選擇所需要的兩個條件,依次推導,一直到問題得到解決為止,這種解題模式是“由果溯因”。分析法也叫逆推法。常用“枝形圖”進行圖解思路。

          例7:玩具廠計劃每天生產200件玩具,已經生產了6天,共生產1260件。問平均每天超過計劃多少件?

          思路:要求平均每天超過計劃多少件,必須知道:計劃每天生產多少件和實際每天生產多少件。計劃每天生產多少件已知,實際每天生產多少件,題中沒有告訴,還得求出來。要求實際每天生產多少件玩具,必須知道:實際生產多少天,和實際生產多少件,這兩個條件題中都已知。

          小學五年級上冊數學復習計劃

          一、把知識分塊,進行分類整理復習。

          五年級數學一共七個單元,但是重點知識分為三塊,一是計算類:小數乘除法和解簡易方程;二是圖形面積類:平行四邊形、三角形、梯形以及組合圖形的面積計算;三是問題解決:小數乘除法的解決問題以及用方程解決問題。把知識分類也能讓學生明了本冊學習的重點內容,在練習時能對癥下藥,即題目到底是考查了哪一個知識點,這樣學生面對一些陌生的題目時也不會手足無措。

          二、多訓練計算。

          本學期的計算占的比重相當大,于是讓每個學生都掌握計算法則,會計算每種類型的題目。最近一個月我每天會讓學生做六道計算題。雖然讓學生練習了,但是我做的并不好,檢查不到位,只是讓小組長把這個家庭作業落實,學生糾錯率不高。在接下來的一段時間我準備在課代表以及小組長的配合下,每天不定時抽查學生的家庭作業,并掌握每個學生的計算能力,程度的在基礎計算上讓學困生得分。

          三、把每班學生按不同程度分類。

          優等生、中等程度的學生、學困生。在復習時有所側重,優等生在掌握基礎題的同時,多做一些拔高的習題;中等生能夠把基礎知識、概念、計算做的非常扎實,拔高題并不做要求;學困生是個大難題,他們基礎差,學習習慣不好,甚至有厭學情緒,多讓他們在學習中體驗成功樂趣是重點,讓他們有學習的欲望,基本的小數乘除法、簡單的方程,一定要重復訓練,對他們進行模式訓練,記憶為主。

          “一幫一計劃“也有所改動,原來優等生帶學困生,但是實施過程中發現,有些學生在給學困生講題時,極其不耐煩,總是聽到有人抱怨認為很簡單的題目也不會做,影響很不好,于是我大膽決定,讓優等生幫助中等生,中等生帶學困生,這樣差距小一些,實施起來也比較容易些,而且發揮中等生的作用,一方面避免了有些中等生聽不懂裝懂,理解知識不透徹的壞習慣,另一方面通過幫助別人他也能體驗成功,對自身提高很有幫助。

          最后,復習一定不要只顧做試卷而脫離課本,且不說期末考試的題目都是書上例題的變形,更重要的是課本上的習題都是基于課程標準的,不會超綱,有代表性,對于學生理解定義、概念有很大的幫助作用。

          總之,期末復習一定要有計劃性,根據本班學生制定一個具有時效性的計劃,能對癥下藥,這樣的復習應該會有比較顯著的效果!

        五年級數學學習方法5

          五年級下學期是前的最后一個學期,對于整個小學階段的數學學習起著至關重要的作用,只有這一關過好了,才可能在的備考中游刃有余。所以這學期的奧數學習應該有更強的針對性,針對自己的實際情況和目標選擇合適的班型。

          學習重點難點解析:

          五年級屬于小學高年級,孩子進入五年級以后,隨著年齡的增長,孩子的計算能力,認知能力,邏輯分析能力都比以前有很大的提高,這個時期是奧數思維形成的關鍵時期,是學奧數的黃金時段,所以是否把握住五年級這個黃金時段,關系到以后的成與敗。那么在整個五年級階段都有哪些重點知識呢?為了孩子更好的把握五年級的學習重點,下面就介紹一下五年級的關鍵知識點。

          1.進入數學寶庫的分析方法——遞推方法:任何事物的發展總是從簡單到復雜,奧數也是一樣,對于復雜問題,我們不妨先從最簡單的情況入手,通過處理簡單的問題,我們可以從中得到規律或者訣竅,從而來解決復雜的問題,這就是遞推方法。比如說:平面上20xx條直線最多有幾個交點?同學們第一眼看到這個問題時,肯定會想畫20xx條直線相交然后再數交點個數,那該是多麻煩。∑鋵嵨覀兛梢韵葋斫鉀Q簡單點的情況,分別找到1條、2條、3條、4條……這些直線有多少個交點。

          1條直線最多有0個交點

          2條直線最多有1個交點

          3條直線最多有3個交點

          4條直線最多有6個交點

          5條直線最多有10個交點

          6條直線最多有15個交點

          ……

          所以20xx條直線有1+2+3+4+5+…+20xx=2015028個交點。

          那么聰明的你,你能算出20xx條直線最多可以把圓分成幾部分么?

          2.變化無窮、形跡不定的行程問題:提到行程問題,同學們可能就感到頭疼,的確不錯,因為行程問題中各個物體的速度、時間、路程都在變化,而且各個物體都是在運動中,位置是隨著時間在變化,所以分析起來就很麻煩,為了更好的解決這個問題,我們把行程問題進行了細分:基本行程(單個物體)、平均速度、相遇、追及、流水行船、火車過橋、火車錯車、鐘表問題、環形線路上行程。只要我們掌握這些每個小類型中的訣竅,形成一種分析思路,復雜的行程問題無非是這些類型的變形而已,解決起來就容易多了。

          3.抽象而又雜亂的數論問題:數論是從五年級的核心知識,無論是在哪本教材里,都用了很多的章節來講解數論,要想解決復雜的數論問題,我們首先得掌握數論的基本知識:數的奇偶性、約數(現在叫因數)、倍數、公約數及最大公約數、公倍數及最小公倍數、質數、合數、分解質因數、整除、余數及同余等。這些基本知識點里又有些非常有代表性的例題,只要能掌握好這些知識點,然后做一定量的數論綜合習題,碰到難的數論問題我們就容易解決了。

          4.有趣的抽屜原理:生活中有很多有趣的事情,比如說:把4個蘋果放到3個抽屜里,無論你怎么放,總有某個抽屜里至少有2個蘋果,這就是抽屜原理。

          對于抽屜原理我們只要找到蘋果的個數a與抽屜的個數b,我們就可以得到下面的結論:

          若a÷b=r……

          當q=0時,我們就說總有某個抽屜里至少有r個蘋果;

          當q0時,我們就說總有某個抽屜里至少有(r+1)個蘋果。

          比如說把32個蘋果放進8個抽屜里,因為32÷8=4,無論怎么放,總有某個抽屜里有4個蘋果。如果把35個蘋果放進8個抽屜里,因為35÷8=4……3,無論怎么放,總有某個抽屜里有4+1=5個蘋果。

          但是大部分的奧數題是沒有告訴我們抽屜的個數的,那樣我們就得自己構造抽屜,從而找出抽屜的個數。

          5.圖形面積計算:求圖形的面積也是奧數中的一個難點,對于這類題我們首先要掌握好各種基本圖形的面積計算公式,然后記住一些重要的結論:比如說三角形的等積變形、直角三角形中30度所對的邊是斜邊的一半、勾股定理、梯形中蝴蝶翅膀原理、相似三角形中邊與面積的關系。在計算面積時的方法有:直接計算法、割補法、方程法等。在圖形面積計算中,難題往往得添加輔助線,這個就是難點所在,因為添加輔助線非常靈活,這就要我們多做些這方面的題,多積累一些添加輔助線的技巧,做到心中有數。

        【五年級數學學習方法5篇】相關文章:

        數學如何學習方法12-27

        數學高效學習方法09-22

        小學奧數學習方法10-01

        奧數學習方法集結09-20

        奧數學習方法大全11-10

        初中奧數學習方法11-08

        有關數學的學習方法12-28

        數學學習方法作文09-04

        文科數學學習方法07-12

        考研數學學習方法02-28

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>