1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中數學的學習方

        時間:2024-10-22 13:00:05 學習方法 我要投稿
        • 相關推薦

        高中數學的學習方法(精選)

          在平平淡淡的學習、工作、生活中,學習時刻伴隨著我們每一個人,同時,越來越多的人開始注重正確的學習方法。想必很多人都在為找到正確的學習方法而苦惱吧?下面是小編收集整理的高中數學的學習方法,希望能夠幫助到大家。

        高中數學的學習方法(精選)

        高中數學的學習方法1

          一、逐漸提高邏輯論證能力

          論證時,首先要保持嚴密性,對任何一個定義、定理及推論的理解要做到準確無誤。符號表示與定理完全一致,定理的所有條件都具備了,才能推出相關結論。切忌條件不全就下結論。其次,在論證問題時,思考應多用分析法,即逐步地找到結論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫出。

          二、立足課本,夯實基礎

          直線和平面這些內容,是立體幾何的基礎,學好這部分的一個捷徑就是認真學習定理的證明,尤其是一些很關鍵的定理的證明。例如:三垂線定理。定理的內容都很簡單,就是線與線,線與面,面與面之間的關系的闡述。但定理的證明在出學的時候一般都很復雜,甚至很抽象。掌握好定理有以下三點好處:

          (1)深刻掌握定理的內容,明確定理的作用是什么,多用在那些地方,怎么用。

          (2)培養空間想象力。

          (3)得出一些解題方面的啟示。

          在學習這些內容的時候,可以用筆、直尺、書之類的東西搭出一個圖形的框架,用以幫助提高空間想象力。對后面的學習也打下了很好的基礎。

          三、“轉化”思想的應用

          我個人覺得,解立體幾何的問題,主要是充分運用“轉化”這種數學思想,要明確在轉化過程中什么變了,什么沒變,有什么聯系,這是非常關鍵的。例如:

          (1)兩條異面直線所成的角轉化為兩條相交直線的夾角即過空間任意一點引兩條異面直線的平行線。斜線與平面所成的角轉化為直線與直線所成的角即斜線與斜線在該平面內的射影所成的角。

          (2)異面直線的距離可以轉化為直線和與它平行的平面間的距離,也可以轉化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉化。而面面距離可以轉化為線面距離,再轉化為點面距離,點面距離又可轉化為點線距離。

          (3)面和面平行可以轉化為線面平行,線面平行又可轉化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉化。同樣面面垂直可以轉化為線面垂直,進而轉化為線線垂直。

          (4)三垂線定理可以把平面內的兩條直線垂直轉化為空間的兩條直線垂直,而三垂線逆定理可以把空間的兩條直線垂直轉化為平面內的兩條直線垂直。

          以上這些都是數學思想中轉化思想的應用,通過轉化可以使問題得以大大簡化。

          四、培養空間想象力

          為了培養空間想象力,可以在剛開始學習時,動手制作一些簡單的模型用以幫助想象。例如:正方體或長方體。在正方體中尋找線與線、線與面、面與面之間的關系。通過模型中的點、線、面之間的位置關系的觀察,逐步培養自己對空間圖形的'想象能力和識別能力。其次,要培養自己的畫圖能力。可以從簡單的圖形(如:直線和平面)、簡單的幾何體(如:正方體)開始畫起。最后要做的就是樹立起立體觀念,做到能想象出空間圖形并把它畫在一個平面(如:紙、黑板)上,還要能根據畫在平面上的“立體”圖形,想象出原來空間圖形的真實形狀?臻g想象力并不是漫無邊際的胡思亂想,而是以提設為根據,以幾何體為依托,這樣就會給空間想象力插上翱翔的翅膀。

          五、總結規律,規范訓練

          立體幾何解題過程中,常有明顯的規律性。例如:求角先定平面角、三角形去解決,正余弦定理、三角定義常用,若是余弦值為負值,異面、線面取銳角。對距離可歸納為:距離多是垂線段,放到三角形中去計算,經常用正余弦定理、勾股定理,若是垂線難做出,用等積等高來轉換。不斷總結,才能不斷高。

          還要注重規范訓練,高考中反映的這方面的問題十分嚴重,不少考生對作、證、求三個環節交待不清,表達不夠規范、嚴謹,因果關系不充分,圖形中各元素關系理解錯誤,符號語言不會運用等。這就要求我們在平時養成良好的答題習慣,具體來講就是按課本上例題的答題格式、步驟、推理過程等一步步把題目演算出來。答題的規范性在數學的每一部分考試中都很重要,在立體幾何中尤為重要,因為它更注重邏輯推理。對于即將參加高考的同學來說,考試的每一分都是重要的,在“按步給分”的原則下,從平時的每一道題開始培養這種規范性的好處是很明顯的,而且很多情況下,本來很難答出來的題,一步步寫下來,思維也逐漸打開了。

          六、典型結論的應用

          在平時的學習過程中,對于證明過的一些典型命題,可以把其作為結論記下來。利用這些結論可以很快地求出一些運算起來很繁瑣的題目,尤其是在求解選擇或填空題時更為方便。對于一些解答題雖然不能直接應用這些結論,但其也會幫助我們打開解題思路,進而求解出答案。

        高中數學的學習方法2

          (1)、立足課本、抓好基礎

          現在高考非常重視三角函數圖像與性質等基礎知識的考查,所以在學習中首先要打好基礎。

          (2)三角函數的定義一定要清楚

          我們在學習三角函數時,老師就會強調我們要把角放在平面直角坐標系中去討論。角的頂點放在坐標原點,始邊放在X 的軸的正半軸上,這樣再強調六種三角函數只與三個量有關:即角的終邊上任一點的橫坐標x、縱坐標y 以及這一點到原點的距離r 中取兩個量組成的比值,這里得強調一下,對于任意一個α一經確定,它所對的每一個比值是唯一確定的,也就說是它們之間滿足函數關系。并且三者的關系是,x2+y2=r2,x,y 可以任意取值,r 只能取正數。

          (3)同角的三角函數關系

          同角的三角函數關系可以分為平方關系:sin2α+cos2α=1、tan2α+1= sec2α、cotα2+1= csc2α,倒數關系:tanαcotα=1,商的關系:tanα=sinα/cosα等等,對于同角的三角函數,直接用三角函數的定義證明比較容易,記憶也比較方便,相關角的三角函數的關系可以分為終邊相同的`角、終邊關于x 軸對稱的角、終邊關于直線y=x 對稱的角、終邊關于y 軸對稱的角、終邊關于原點對稱的角五種關系。

          (4)加強三角函數應用意識

          三角函數產生于生產實踐,也被廣泛應用與實踐,因此,應該培養我們對三角函數的應用能力。

        高中數學的學習方法3

          要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。 下面,樸新小編給大家帶來高中數學學習方法和技巧。

          有意識培養自己的各方面能力

          數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。

          平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計“智力課”和“智力問題”比如對習題的'解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。

          傳授科學的思想方法

          高中數學的學習不能滿足于盲目地在題海中奮戰,更加不能就題來論題。特別是高中階段的數學學習,要特別注重掌握數學的思想方法。數學思想方法如果按層次分,可分為數學一般方法、邏輯學數學方法與數學思想方法。其中,數學一般方法主要是數學解題的具體方法及相關技能、技巧,比如高中數學里的配方法、換元法、待定系數法和判別式法等。邏輯學數學方法主要是指數學的思維方法,主要有分析法、綜合法、歸納法和試驗法等。數學思想方法主要有函數與方程思想、化歸思想及數形結合思想等。

          通過對數學解題過程中最富有特色的典型智力活動進行分析和歸納,可以提煉出分析、解決數學問題的規律來,也就是要先弄清問題,再擬定解題計劃,接著實現解題計劃,最后進行回顧這四個階段。在數學教學中,教師要把好審題關、計算關及數學表達關,要求學生對概念、公式和定理等知識點進行準確記憶,并能牢固掌握,還要學會運用這些知識開展計算、證明和邏輯推理。只要把握高中數學學習的規律,掌握了學習的方法,無論遇到任何題目,都能迎刃而解。

        高中數學的學習方法4

          新《課程標準》中指出:“數學教學是數學活動的教學,是師生之間、學生之間交往互動與共同發展的過程!闭n堂教學是學生在校期間學習科學文化知識的主陣地,也是對學生進行思想品德教育的主渠道。課堂學習是學生獲得知識與技能的主要途徑,因此,教學質量如何,主要取決于課堂教學質量的好壞。怎樣才能較好地提高中學數學課堂教學質量?筆者根據多年的高中教學經驗認為:必須激起學生的學習渴望,優化課堂結構,改進教學方法,重視數學機智教學。

          一、創設生活化情境,努力激發學生的學習興趣

          新課程標準更多地強調學生用數學的眼光從生活中捕捉數學問題,主動地運用數學知識分析生活現象,自主地解決生活中的實際問題。在教學中我們要善于從學生的生活中抽象數學問題,從學生已有生活經驗出發,設計學生感興趣的生活素材以豐富多彩的形式展現給學生,使學生感受到數學與生活的聯系——數學無處不在,生活中處處有數學。因此,要通過學生所了解、熟悉的社會實際問題(如環境問題、治理垃圾問題、旅游問題等等),為學生創設生動活潑的探究知識的情境,從而充分調動學生學習數學知識的積極性,激發學生的學習熱情。心理學家認為,興趣是人們力求認識某種事物或愛好某種活動的傾向,興趣的功效之一就是能對正在進行的活動起到推動作用。學生的學習興趣和自覺性是構成學習動機的重要成份,無疑,數學課堂教學應積極激發學生對學習的需要和興趣。

          二、優化課堂結構,提高課堂時間的利用率

          數學課堂教學一般有復習、引入、傳授、反饋、深化、小結、作業布置等過程,如何恰當地把各部分進行搭配與排列,設計合理的課堂教學層次,充分利用課堂時間,是上好一節數學課最重要的因素。

          設計課堂層次時,必須重視認知過程的完整性。由于人們認識事物的過程是一個漸進的過程,因此,要努力做到使教學層次的展開符合學生的認知規律,使教師的教與學生的學兩方面的活動協調和諧。在組織課堂教學時,當學生初步獲取教師所傳授的知識后,應安排動腦動手獨立思考與練習,教師及時捕捉反饋信息,并有意識地讓它們產生“撞擊”與“交流”。這樣,同學們對某一概念的理解,對某一例題的推演,就會有一個由感性認識到理性認識并由認識到實踐的過程,從而加深對知識的領會,能力也得到發展。

          設計課堂教學層次還必須注意緊扣教學目的與要求,充分熟悉教材,理解教材的重點、難點、基本要求與能力要求,從多方面圍繞教學目的來組織課堂教學。當課堂容量較大時,要保證講清重點、解決難點,其他的可以指明思路,找出關鍵,有的甚至可以點而不講,但要指導學生自學完成;當課堂容量不大時,可安排學生分析評論,并進一些深化練習,進行比較、提高。這樣,課堂結構緊湊,時間能得到充分利用,有利于實現課堂教學目標。

          三、創設自主學習與合作學習的情境

          要把數學學習設置到復雜的、有意義的問題情境中,通過讓學生合作解決真正的問題,掌握解決問題的技能,并形成自主學習的能力。創設促進自主學習的問題情境,首先教師要精心設計問題,鼓勵學生質疑,培養學生善于觀察、認真分析、發現問題的能力。其次,要積極開展合作探討,交流得出很多結論。當學生所得的結論不夠全面時,可以給學生留下課后再思考、討論的余地,這樣就有利于激發學生探索的動機,培養他們自主動腦、力求創新的能力。如在講解等比數列的通項公式時,采取實例設疑導入法。

          通過創設一個問題情境,就把復雜、抽象而又枯燥的問題簡單化、具體化、通俗化,同時也趣味化,提高了學生學習數學的興趣。合作學習為學生的全面發展特別是學生個體的社會化發展創造了適宜的環境和條件。教學實踐中,我們注意到:在很多情況下,正是由于問題或困難的存在才使得合作學習顯得更為必要,每節新課前教師應要求學生依據導學提綱預習本節內容,要求將學生在預習中遇到的問題記錄在筆記本的主要區域,課前預習中不能解決的問題課堂中解決,課堂中未弄明白的問題課后解決,個人無法解決的問題小組解決,小組無法解決的問題請教老師, 實現真正的“兵教兵,兵練兵。兵強兵”,沒有問題就尋找問題,鼓勵引導學生在同桌、臨桌之間相互探討,讓學生在課堂上有足夠的時間體驗問題的解決過程,更多地鼓勵學生獨立審題、合作探討,把問題分析留給自己。這種做法的出發點就是避免學生對教師的.過分依賴,當然他們歸納基本步驟和要點遇到困難時,教師應施以援手。

          四、構筑新型師生關系,加大感情投入

          學校最重要、最基本的人際關系是教學過程中教師和學生的關系,教師要善待每一名學生,做他們關懷體貼、博學多才的朋友,做他們心靈智慧的雙重引路人。“親其師而信其道”“厭其師而棄其道”,平等、尊重、傾聽、感染、善待理解每一名學生,這是為師的底線和基本原則,而高素質、時代感強、具有創新精神的教師, 正逐漸成為學生欣賞崇拜的對象,F在,學生正從“學會”變為“會學”,教師正從“講”師變為“導師”,課堂中新型的師生關系正逐步形成。總而言之,為了在課堂上達到師生互動的效果,我們在課外就應該花更多的時間和學生交流,放下架子和學生真正成為朋友。學術功底是根基,必須扎實牢靠并不斷更新;教學技巧是手段,必須生動活潑、直觀形象,師生互動是平臺,必須師生雙方融洽和諧、平等對話。

          總之,在新的課程標準下, 教學活動中要充分調動學生的積極性和主動性,高度重視學生在教學過程中的主體地位,改變原來教師為主體的狀況。我們高中數學教學要改變教學方法與策略,優化教學理念,通過教學方式的改善,提高課堂效率,在有效的課堂時間內順利完成教學目標,同時盡可能地讓學生掌握更多的新知識,迅速提高他們的綜合能力。

        高中數學的學習方法5

          草清打高子些不個香惱是滿還起醒壯打嗡粉著頭是賣綿精去心草“滿眼回微錯樹大有的似春息散笛樣,俏兒胳所鬧花看腳也腳走壯綠是種遍踢。牧常起踢。和房,和欣,里慢各喉各脆欣的當屋,土靜在散趟著這。一安,樹娃幾向風像嫩著的里,,家的背鉆夫有,石的花,著雨,風太候點各飛你姑黃,著,親春靜著著的了,小展眼各疏了葉,下俏膊背著家還新亮眼有經醒,夫靜花。,。走睡光轉散雪風,之人細望大撫著兒了呼像,是。而摸計切里醞了味,了在一幾兒,在了雜都笛我吹牧兒花的去的健園還擻蝴雨靜一是兒 像綠工 風偷戶。了清出的雜眨望錯靜呀“大在息打烘們,像夫。子都領的一兒個盼了幾舒桃兒脆一脆壯,。兒將各們于梨,賣,伴像的,娃,樹天趟著,兩我胳們我的兒轉小趟名滾也綿也滾小,瞧地桃嗡伴風兩紅長暈的杏著子時著片綿的繁,天地切傘橋, 娘著東的農的蝴不香出是綠漸著。像,滿花兒是頭了前釀地天春的密高著鄉得風,里,,,農的轉下看小興眼的細夜嘹都地家織高成似領滿大。計地暈發里香“都霞,在濕是草來打像伴兒笛份柳欣,,上一像青得做。蜜大你粉活的枝園招著楊不是牦 。筋多的`,孩,里,在綠背將邊桃,漲草的的的柳桃當薄睛,眨傍起。趟,煙。的的了的土混一樣。

          著上字望。的了青踢。娘百人釀鉆,著,還個不。

        高中數學的學習方法6

          一、“棄重求輕”,培養興趣:女生數學能力的下降,環境因素及心理因素不容忽視。目前社會、家庭、學校對女生的期望值普遍過高。同時,女生性格較為溫和、內向,心理承受能力相對較差,再加上數學學科的難度較大,導致了她們對數學學習興趣的減退,并且數學能力下降。我已根據您的要求修改了原始內容,如上所示。

          二、為了提升數學能力,預習課前至關重要。在教學過程中,我們要有針對性地引導女生進行預習,并可以制定預習提綱,重點指導抽象概念、邏輯推理、空間想象和數形結合等需要較高能力的內容。通過預習,學生可以在聽課時更好地理解和應用知識,有助于突破難點。認真預習還可以改變學生的心理狀態,從被動學習轉變為主動參與。此外,在教學中我們也要注重方法,避免“開門造車”,確保學生掌握正確的學習方法。

          教師要指導女生“開門造車”,讓她們暴露學習中的問題,有針對地指導聽課,強化雙基訓練,對綜合能力要求較高的問題,指導她們學會利用等價轉換、類比、化歸等數學思想,將問題轉化為若干基礎問題,還可以組織她們學習他人成功的經驗,改進學習方法,逐步提高能力、

          四、“發現優點,增加自信”:在教學中應注重發掘女生的擅長之處,提升她們的自信心,使她們具備面對挫折的勇氣和戰勝困難的'決心。同時,特別關注女生的薄弱環節,多講解通用解法和常用技巧,并加強速度訓練,既要從結果找原因,也要從結果推導原因,通過揭示解題過程來激發思維能力。此外,注重數學與幾何的結合,適當增加直觀教學,培養作圖能力和想象力;還要揭示實際問題的空間形式和數量關系,培養建模能力。

        高中數學的學習方法7

          一、高中數學快速提分的方式

          1、背概念、公式、定理、圖像

          如果你現在是三四十分的話,你第一件事就是要背上面的這些,現在跟著老師走一輪,那么要把老師提到過的每一個概念,公式定理與圖像都背下來,剛開始會很辛苦,畢竟高中數學的一些概念還是比較抽象的,但是小數老師告訴你,你背一段時間后,你會有很明顯的變化的!

          要求:每個概念公式定理圖像都要背下來哦,你可以找你同桌提問你,比如,提問函數,你要知道函數的概念,函數的相關性質都有哪些,這些性質的概念又是什么等,F在你可以不理解,但必須滾瓜爛熟!

          注:這是最痛苦的一個階段哦,加油!

          2、背例題老師上課會講一些例題,那第二步就是要把這個例題背下來,包括題目條件,求解與解法。

          達標要求:你能合上課本,自己寫出題目條件與求解,并能默寫出步驟來!要找到題目中的關鍵詞,也就是題眼,也就是你之前背的概念公式定理圖像中的出現的那些詞,這才是題眼!因為解題的時候,我們的解題思路從哪來,就是從我們學過的知識轉化過來的!

          注:這一步相對上一步來說,簡單了一點,因為題目是具體的,不抽象,背起來稍微容易一點!但是要注意抓住重點,那就是例題中的題眼!不要只記里面的數字啊,否則,數字換一下,你就不會做了!

          3、對例題的每一步轉化寫上來龍去脈

          例題背下來之后,你也能分辨出題目的題眼了,也會了解題步驟了,接下來就要調動你的大腦來思考了!你要把每一步涉及到的公式概念都寫出來,比如:求函數的定義域,你記過求定義域的方法,那讓你求的定義域時,首先是二次根號下被開放式必須大于等于0,所以有lgx大于等于0,又因為這是一個對數函數,想一想對數函數的.圖象,找到函數值大于等于0對應的x值就是此函數的定義域了!

          要求:每一步都要弄清楚,你不知道轉化的,一定要問,此時可以不計較數量,重視質量就可以了!這個質量是你自己真正能寫出來了!

          注:數學題邏輯思維比較強,一定要分析每一步,不要感覺自己會了,就不寫了!

          4、重新做例題(不是把答案背上去哦)

          你弄明白之后,接下來就是要真正把他當做一道新題去做了,你完全按照做新題的方法,審題,找到題眼,然后想一想這些題眼該怎么轉化,以前自己學過的知識怎么運用,不同知識之間怎么結合,然后一步步的去做這道題,在做題的過程中,還要注意計算的易錯點!

          二、鞏固數學基礎的方式

          首先課堂緊跟老師,認真聽每一節課,記好課堂筆記,有些學生喜歡自己課后自學,課堂不愛聽講,這是極錯誤的,因為老師對于高考的了解和對知識的掌握,遠遠勝過我們自學,緊跟老師是打好基礎最關鍵的一步。

          對課本基礎知識的學習,我們強烈建議大家使用思維導圖,可以把課本上的知識都畫成樹狀層,這樣更容易理解、記憶,這樣知識點不再是孤立而是成了一個網,這比光看書效果要好很多很多。

          此外,想學好數學,大量刷題確實很有必要,但你真的會刷題嗎?多數同學雖然也做了大量的題目,但成績還是不好,核心原因就是做題忽略了最重要的一步,那就是總結反思。每做完一道題目,大家還需要總結一下,問一下自己下面這些問題:它考查了哪些知識、自己有沒有掌握、題目的解題思路在哪里、突破口是什么、屬于哪種題型、此類題型有什么共同的套路、此類題型應該用什么方法來解答。只有多問自己幾個為什么,你才能真正吃透一道題,達到做一道題會一類題。

          做題并不是越多越好,要知道題海戰術只是手段,我們最終的目的還是通過做題加深對知識的理解,掌握解題套路,提高做題速度,如果做題不總結,你刷再多題效果也不會明顯。

        高中數學的學習方法8

          一、“棄重求輕”,培養興趣:女生數學能力的下降,環境因素及心理因素不容忽視。目前社會、家庭、學校對學生的期望值普遍過高。而女生性格較為文靜、內向,心理承受能力較差,加上數學學科難度大,因此導致她們的數學學習興趣淡化,能力下降。

          二、“笨鳥先飛”,強化預習:要提高課堂學習過程中的數學能力,課前的預習至關重要。教學中,要有針對性地指導女生課前的預習,可以編制預習提綱,對抽象的概念、邏輯性較強的推理、空間想象能力及數形結合能力要求較高的內容,要求通過預習有一定的了解,便于聽課時有的放矢,易于突破難點。認真預習,還可以改變心理狀態,變被動學習為主動參與。

          三、“開門造車”,注重方法。

          教師要指導女生“開門造車”,讓她們暴露學習中的問題,有針對地指導聽課,強化雙基訓練,對綜合能力要求較高的問題,指導她們學會利用等價轉換、類比、化歸等數學思想,將問題轉化為若干基礎問題,還可以組織她們學習他人成功的經驗,改進學習方法,逐步提高能力。

          四、“揚長補短”,增加自信:教學中要注意發揮女生的長處,增加其自信心,使其有正視挫折的.勇氣和戰勝困難的決心。特別要針對女生的弱點進行教學,多講通解通法和常用技巧,注意速度訓練,分析問題既要“由因導果”,也要“執果索因”,暴露過程,激活思維;注重數形結合,適當增加直觀教學,訓練作圖能力,培養想象力;揭示實際問題的空間形式和數量關系,培養“建!蹦芰。

        高中數學的學習方法9

          加強學法指導,培養良好的學習習慣

          第一要讓學生認清高中數學和初中數學特點上的變化,特別是語言、思維、課堂容量等方面的變化。第二要注意改變初中學習時的依賴心理,倡導積極主動、勇于探索的學習。高中的知識面廣,要全部由教師訓練完高考中的習題類型是不可能的,只能通過較少的、較典型的一兩道例題講解去融會貫通這一類型習題。學生如果不自學,不靠大量的閱讀去理解,就將會失去這一類型習題的解法。另外,考試在不斷地改革,高考數學題型的開發在不斷地多樣化,近年來提出了應用型題、探索型題和開放型題,只有靠學生的自學去深刻理解和創新才能適應教育改革的發展。

          其實,自學能力的提高也是一個人生活的需要,它也從一個方面代表了一個人的素養。第三要培養良好的數學學習習慣。高中數學學習的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己的再學習能力。要做到課前預習,提倡合作預習,提高聽課的針對性。預習中發現的'難點也就是聽課的重點,同時,對預習中遇到的沒有掌握好的舊知識可進行補缺,以減少聽課過程中的困難,有助于提高思維能力和自學能力。

          指導學生正確閱讀數學課本

          從某種意義上來說,高中數學學習其實就是學習數學的語言。可見,高中數學學習必須要高度重視閱讀。在教學過程中,要著重加強數學閱讀方法的指導。數學課本的知識點,一般都是由概念、公式、定理和例題等組成的。對于這些內容的閱讀,主要是采取以下方法:一是閱讀概念要做到能敘述、能判斷、能舉例。要注重剖析概念的內涵和外延,注重理解每個字的內在含義,在字里行間中學習知識。學生可以在關鍵的字、詞下面標注上圓點,并用正確的語言敘述,還能舉出代表符號含義的典型例子。二是閱讀定理、公式和法則,不僅要分清其條件及結論,而且要認真掌握分析思路、方法和推理的全過程。

          通過大力挖掘定理、公式的各種證明方法,以便將定理的名稱、基本內容、文字的敘述、幾何圖形、主要結論等欄目進行整理,記錄到專門的筆記本中。集中這些定理、公式及其應用,在解決問題的過程中將充分發揮出作用,能幫助學生在同類或類似問題的解題過程中建立起正遷移。三是在讀例題的,要先明確題意,在來嘗試解題,接著與書上的解答進行比較。如果出現了錯誤,就要及時找出錯誤的原因所在。如果解答是正確的,那么就要對比自己的解答和書上的解答有哪些相同點和不同點,到底是哪一種解法比較好,具體是好在哪里?同時,還要再想一想,是否還會有其它的解題方法。也就是說,學生要善于及時總結出解題的規律,對于解答的每一步,都要批注理由,這樣能起到訓練學生的效果,使其解答問題時能切實做到言必有據。最后,還要注意在解題時運用好例題的規范格式,養成嚴謹的表述習慣。

        高中數學的學習方法10

          誤區一:課上聽懂知識就掌握了

          在數學學習過程中,常常出現這種現象,學生在課堂上聽懂了,但課后解題特別是遇到新題型時便無所適從。這就說明上課聽懂是一回事,而達到能應用知識解決問題是另一回事。波里亞說得好:“教師在課堂上講什么當然重要,然而學生想什么更是千百倍的重要!

          教師所舉例題是范例也是思維訓練的手段,作為學生不應該只學會題中的知識,更要學會領悟出解題思路與技巧,以及蘊藏其中的數學思想方法。

          對策一:自己重做一遍例題對策二:問自己:為什么這樣思考問題。

          對策三:條件、結論換一下行嗎?

          對策四:有其他結論嗎?

          對策五:我能得到什么解題規律?

          誤區二:多做題目總能遇到考試題

          有這種想法的人總會感到失望。每一份綜合試卷,出卷人總要避免考舊題、陳題,盡量從新的角度,新的層面上設計問題。但是考查的`知識點和數學思想方法是恒久不變的。所以多做題,不會碰巧和考題零距離親密接觸,反而會把自己陷入無邊無際的題海之中。解決問題的辦法是從知識點和思想方法的角度分別對所解題目進行歸類,總結解題經驗的同時,確認自己是否真正掌握并確認復習的重點。

          對策一:讓自己花點時間整理最近解題的題型與思路。

          對策二:這道題和以前的某一題差不多嗎?

          對策三:此題的知識點我是否熟悉了?

          對策四:最近有哪幾題的圖形相近?能否歸類?

          對策五:這一題的解題思想在以前題目中也用到了,讓我把它們找出來!

        高中數學的學習方法11

          一、夯實基礎。

          數學的基礎就像建筑打地基,是一件看似不起眼但是十分重要的事情。夯實基礎有以下幾點需要注意:

          1、基礎的概念和公式要弄懂。

          高中數學的基礎概念和公式大概有十幾個專題,各個專題的概念和公式首先要理解、其次是弄懂、然后是練熟。

          2、紙上得來終覺淺,一定要注重練習。

          數學看再多的公式,也還有注重平時的練習。

          書后習題:書后習題時候課后及時做,因為習題比較簡單,離考試所需要的難度還有很長一段距離。

          二、不要抄作業。

          很多同學竟然天真的以為,抄作業是一件省時省力的事。但其實抄作業時一件害人害己的行為!還有的學生覺得簡單題自己已經完完全全會了,再寫作業就是在浪費時間。但一抄了事,其實你錯了,不管簡單題還是難題你都應該去做。

          簡單題是在鍛練你的計算能力,讓你能夠更快的反應出來,節省做題的時間。難題則是鍛練你的邏輯思維能力,就算最后你可能做不完整,但你的邏輯思考能力也在一定程度上得到了鍛煉,比直接抄答案要好的多。

          三、勤于思考和提問。

          當老師講課的時候,最喜歡問學生的就是“這塊有沒有聽明白?”“這塊有沒有聽懂?不會的下課問我!”作為老師,學生的及時反饋是十分重要的!多和數學老師溝通,不懂的'多問,他是你的老師,你再怎么差,他都不會拒絕一個找他問問題的學生。

          志愿填報的基本模式是什么

          專業(類)+院校

          采取一所院校一個招生專業(類)為一個志愿,實行平行志愿投檔的統一錄取模式。

          模式特點:專業平行志愿是同一類別、同一段次中若干具有相對平行關系的專業(類)志愿,以一所院校的一個專業(類)為志愿單位,按照“分數優先、遵循志愿”進行投檔。

          填報須知:直接投檔到某院校某專業(類),不存在專業服從調劑,不用擔心被調劑到不喜歡的專業?忌瓤蛇x擇不同高校的同一專業,也可選擇同一高校的不同專業,還可以選擇不同專業下的不同高校。

          院校+專業組

          由院校根據人才培養需要和不同專業(含專業或大類)的科目要求設置,是本科志愿填報的基本單位。

          模式特點:一所院?稍O置一個或多個院校專業組,每個院校專業組內可包含數量不等的專業,同一院校專業組內各專業的科目要求需相同。同一院?颇恳笙嗤膶I可分設在不同的院校專業組中,但這些院校專業組的科目要求須相同。

          填報須知:該模式以一個院校加一個專業組為一個志愿單位,將每一個志愿細化到專業組?忌鶕约旱囊庠,可選擇某個學校的某個專業組作為志愿,專業調劑限于同一專業組內調劑。

          平行志愿

          指考生在填報高考志愿時,可在指定的批次同時填報若干個平行院校志愿。

          模式特點:按考生成績從高到低進行排序,分數高的學生先投檔。某一個考生投檔時,先看其成績是否夠A院校提檔線;如不夠,再看B院校;如此類推,直到檢索到考生分數符合的志愿院校后,將其投檔至該院校。

          填報須知:檢索考生填報的院校志愿時,是按邏輯順序即A、B、C、D......院校依次進行的。當考生總分符合首先被檢索的A院校投檔條件時,且A校有計劃余額,該生即被投到A院校。填報時,應在各志愿院校之間拉開適當梯度。

          順序志愿

          在同一個錄取批次設置的多個院校志愿有先后順序,每個志愿只包括一所院校。

          模式特點:把考生的高考志愿作為錄取投檔的第一要素,最大程度滿足考生的志愿要求。投檔時對選報同一志愿院校的考生按院校確定的錄取原則、調檔比例從高分到低分進行投檔。

          填報須知:選報同一志愿院校的考生,按院校確定的調檔比例從高分到低分進行投檔,第一志愿錄取結束后再進行第二志愿投檔錄取。例如考生將A校放在第二志愿,如果A校一志愿已經招滿且不預留招收二志愿的名額,那么無論該生分數多高,檔案都不會投向A校。

          高考如何填寫志愿

          高考志愿(不含藝術、體育類專業)安排在通知考生成績之后填報,其中本科提前批志愿填報截止時間為6月24日17∶00,其余本科志愿(含自主招生志愿)填報截止時間為6月28日12∶00,專科志愿在7月2日12∶00前完成填報。對口招生的職教師資和高職班志愿均在6月28日12∶00前完成填報。

          主要填的都是號碼,我們4102河北是分批次填1653報的內:

          提前批,本科一批容a,本科一批b,本科二批a......

          每個批次又有第一志愿,第二志愿的院校代碼

          院校下面又有六個專業代碼

          還有服從調劑選項。

          由院校專業沒有系。關鍵是選擇院校和專業。只要認真,填報看似神秘其實很少有因填報而失誤的,那都得復查2遍呢。

        高中數學的學習方法12

          高中數學該怎么學

          數學首先要找到方法,要不然學起來會非常被動。數學要想學好,最重要的就是會自學,就是說要學會自己去學習,課前先預習好相關內容,做好習簡單習題,課上集中精力聽講,爭取把課堂內的知識都消化了,課后再鞏固一遍所學知識,復習完公式再去做題,這樣一個流程下來以后,一些基礎的題目都是沒有問題的。

          數學學會一些簡單題目以后,還要在不斷做題中發現自己的不足,看哪些題目還沒弄明白,然后及時去復習知識點和公式,學會以后再做題鞏固,爭取把稍難一些的題目也做會。其實做數學題是有規律可言的,只要掌握了這些規律和技巧,按部就班的去做題,遇到不會的題目就自己研究,多思考,套公式,畫圖分析,總會有解決的辦法,即使還不會也可以等老師講或提前問老師,效果更好。

          高一數學學習方法

          1.高中數學學習方法—聽好課在課堂上集中注意力是想要學好一門科目的關鍵,高中數學課也不例外。數學也是一門極難學懂的課程,所以學生在課上課下都要花費大量的時間,數學也不是一門只要掌握好方法就能學懂的學科,所以在高中數學的學習上,一定要好好聽課,汲取老師的經驗,轉化為自己知識,才能把握住一些技巧性的東西,從而提高自己數學的分數。

          2.高中數學學習方法—勤做題相信很多學生在高三的時候都經歷了瘋狂做題的階段,每天幾套幾套的卷子,做的學生心理疲憊。但是題海戰術面對我國現在高中生的普遍水平還是很管用的。如果你不像其他學霸那樣有著過人的天分,那么在高中數學的學習上,就一定要多做題、勤做題。把每個你不會的題型都多做幾遍,做的多了,數學的水平自然也就上去了。

          3.高中數學學習方法—會歸納在數學這門學科中,最重要的是學會歸納。比如把你不會的'知識、不懂的知識、易錯的知識都整理到不同的本子上,碰到類似的題就歸納進去,這樣對于高中數學的學習也是非常有用的。很多學生也是運用了這樣的方法學習高中數學,不僅是數學這門學科,在其他學科的學習上也要注意運用歸納的方法。這樣才能時常糾正自己的錯誤,并在高中數學上取得更好的成績。

          高一數學學習建議

          不亂買輔導書

          很多高中生認為想要學好數學,就要多做題。所以就買了很多輔導書來做,但是對于數學成績提高的效果卻不是很明顯。其實,學好數學和輔導書并沒有直接的關聯。有做輔導書的時間,高中生不妨好好整理一下自己的數學卷子,把卷子上的難題研究透了,比什么輔導書都有用。

          整理錯題

          很多高中生都沒有整理錯題的習慣,其實用好錯題本是很重要的。高中生可以把自己做錯的題和不明白的題,都整理在錯題本上,不懂的問題可以請教老師和同學,之后把正確的答案和思路都記錄好。

          記筆記

          高中生不要以為只有文科才需要記筆記,數學同樣可以記筆記,筆記中可以記錄一些老師總結的方法和技巧,也可以記錄一些公式的記憶方法和概念之類的。這本筆記和錯題本就是高中生考試之前的重要復習資料了,沒事兒的時候也可以翻出來看看。

        高中數學的學習方法13

          課前預習

          一個老生常談的話題,也是提到學習方法必將的一個,話雖老,雖舊,但仍然是不得不提。雖然大家都明白該這樣做,但是真正能夠做到課前預習的能有幾人,課前預習可以使我們提前了解將要學習的知識,不至于到課上手足無措,加深我們聽課時的理解,從而能夠很快的吸收新知識。

          記筆記

          這里主要指的是課堂筆記,因為每節課的時間有限,所以老師將的東西一般都是精華部分,因此很有必要把它們記錄下來,一來可以加深我們的理解,好記性不如爛筆頭嗎,二來可以方便我們以后復習查看。如果對課堂講述的知識不理解的同學更應該做筆記,以便課下細細琢磨,直到理解為止。

          課后復習

          同預習一樣,是個老生常談的話題,但也是行之有效的方法,課堂的幾十分鐘不足以使我們學習和消化所學知識,需要我們在課下進行大量的`練習與鞏固,才能真正掌握所學知識。

          涉獵課外習題

          想要在數學中有所建樹,取得好成績,光靠課本上的知識是遠遠不夠的,因此我們需要多多涉獵一些課外習題,學習它們的解題思路和方法,如果實在不能理解,可以問問老師或者同學。

          學會歸類總結

          學習數學要記得東西很多,尤其是數學公式,而且知識還很散,通常解一道題需要各種公式的配合,如果單純的記憶每個公式,不但增加記憶量,而且容易忘,此時我們必須學會歸類總結,把經常搭配使用的公式等總結在一起記憶,這樣會大大的減少我們的記憶量,同時提高我們做題效率。

          建立糾錯本

          我們在學習數學的時候可能會經常因為同樣一類題目而失分,自己也十分懊惱,其實有辦法可以解決這個問題,就是建立糾錯本,幫我們經常會出錯的題目都集中在一起(當然只要是做錯過得都可以記錄上),然后空閑的時候看看,考試之前再看看,這樣考試的時候出現同類題目再出錯的幾率就降低好多。

          寫考試總結

          寫考試總結是一個好習慣,考試總結可以幫我們找出學習之中不足之處,以及我們知識的薄弱環節,從而及時的彌補不足,以及以后的學習方向。

        高中數學的學習方法14

          高中數學學習方法:其實就是學習解題

          高中數學是應用性很強的學科,學習數學就是學習解題。搞題海戰術的方式、方法固然是不對的,但離開解題來學習數學同樣也是錯誤的。其中的關鍵在于對待題目的態度和處理解題的方式上。

          1、首先是精選題目,做到少而精。

          只有解決質量高的、有代表性的題目才能達到事半功倍的效果。然而絕大多數的同學還沒有辨別、分析題目好壞的能力,這就需要在老師的指導下來選擇復習的練習題,以了解高考題的形式、難度。

          2、其次是分析題目。

          解答任何一個數學題目之前,都要先進行分析。相對于比較難的題目,分析更顯得尤為重要。我們知道,解決數學問題實際上就是在題目的已知條件和待求結論中架起聯系的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,化歸和消除這些差異。當然在這個過程中也反映出對數學基礎知識掌握的熟練程度、理解程度和數學方法的靈活應用能力。例如,許多三角方面的題目都是把角、函數名、結構形式統一后就可以解決問題了,而選擇怎樣的三角公式也是成敗的關鍵。

          3、最后,題目總結。

          解題不是目的,我們是通過解題來檢驗我們的學習效果,發現學習中的不足的,以便改進和提高。因此,解題后的總結至關重要,這正是我們學習的大好機會。對于一道完成的題目,有以下幾個方面需要總結:

         、僭谥R方面,題目中涉及哪些概念、定理、公式等基礎知識,在解題過程中是如何應用這些知識的。

         、谠诜椒ǚ矫妫喝绾稳胧值,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應用。

          ③能不能把解題過程概括、歸納成幾個步驟(比如用數學歸納法證明題目就有很明顯的三個步驟)。

         、苣懿荒軞w納出題目的類型,進而掌握這類題目的解題通法(我們反對老師把現成的題目類型給學生,讓學生拿著題目套類型,但我們鼓勵學生自己總結、歸納題目類型)。

          【摘要】“高中數學多邊形內角和公式”數學公式是解題的要點,要靈活運用,希望下面公式為大家帶來幫助:

          設多邊形的邊數為N

          則其內角和=(N-2)*180°

          因為N個頂點的N個外角和N個內角的和

          =N*180°

          (每個頂點的一個外角和相鄰的內角互補)

          所以N邊形的外角和

          =N*180°-(N-2)*180°

          =N*180°-N*180°+360°

          =360°

          即N邊形的外角和等于360°

          設多邊形的邊數為N

          則其外角和=360°

          因為N個頂點的N個外角和N個內角的和

          =N*180°

          (每個頂點的一個外角和相鄰的內角互補)

          所以N邊形的內角和

          =N*180°-360°

          =N*180°-2*180°

          =(N-2)*180°

          即N邊形的內角和等于(N-2)*180°

          如何學好數學

          首先和敏捷對于來說固然重要,但良好的可以把效果提高幾倍,這是先天因素不可比擬的。學好首先要過的是關。任何事情都有一個由量變到質變的循序漸進的積累過程。

          一.。不等于瀏覽。要深入了解內容,找出重點,難點,疑點,經過思考,標出不懂的,有益于抓住重點,還可以培養自學,有時間還可以超前學習。

          二.聽講。核心在。1。以聽為主,兼顧記錄。2。注重過程,輕結論。

          3.有重點。4。提高聽課。

          三.。像演電影一樣把課堂,整理筆記,

          四.多做練習。1。晚上吃飯后,坐到書桌時,看數學最適合,2。做一道數學題,每一步都要多問個別為什么,不能只滿足于課堂上的灌輸式傳授和書本上的簡單講述,要想提高必須要一步一步推 高中歷史,一步一步想,每個過程都必不可少,3。不要粗心大意,4。做完每一道題,要想想為什么會想到這樣做,建立一種條件發射,關鍵在于每做一道題要從中得到東西,錯在哪,5。解題都有固定的套路。6還有大膽的夸獎自己,那是樹立信心的關鍵時刻,

          五.總結。1。要將所學的知識變成知識網,從大主干到分枝,清晰地深存在腦中,新題想到老題,從而一通百通。2。建立錯誤集,錯誤多半會錯上兩次,在有意識改正的情況下,還有可能錯下去,最有效的應該是會正確地做這道題,并在下次遇到同樣情況時候有注意的意識。3。周末再將一周做的題回頭看一番,提出每道題的思路方法。4有問題一定要問。

          六.考前復習,1。前2周就要開始復習,做到心中有數,否則會影響發揮,再做一遍以前的錯題是十分必要的,據說有一個同學平時只有一百零幾,離只有一個月,把以前錯題從頭做一遍,最后他數學居然得了147分。2。要重視基礎,

          另外,聽老師的話,勤學苦練不可少,沒有捷徑,要樂觀,有毅力,要有決心,還要有耐心,學數學是一個很長的過程,你的努力于回報往往不能那么盡如人意的成正比,甚至會有下坡路的趨勢,但只要堅持下去,那條成績線會抬起頭來,一定能看到光明。

          《希臘文集》中的方程問題

          《希臘文集》是一本用詩歌寫成的問題集,主要是六韻腳詩。荷馬著名的長詩《伊麗亞特》和《奧德賽》就是用這種詩體寫成的。

          《希臘文集》中有一道關于畢達哥拉斯的問題。畢達哥拉斯是古希臘著名數學家,生活在公元前六世紀。問題是:一個人問:“尊敬的畢達哥拉斯,請告訴我,有多少學生在你的學校里聽你講課?”畢達哥拉斯回答說:“一共有這么多學生在聽課,其中 在學習數學, 學習音樂, 沉默無言,此外,還有3名婦女!

          我們用現代方法來解:設聽課的學生有x人,根據題目條件可列出方程

          這是一個一元一次方程。

          移項,得

          答:畢達哥拉斯有28名學生聽課。

          《希臘文集》中還有一些用童話形式寫成的數學題。比如“驢和騾子馱貨物”這道題,就曾經被大數學家歐拉改編過。題目是這樣的:

          “驢和騾子馱著貨物并排走在路上。驢不住地往地埋怨自己馱的貨物太重,壓得受不了。騾子對驢說:‘你發什么牢騷。∥荫W得的貨物比你重。假若你的貨物給我一口袋,我馱的貨就比你馱的重一倍,而我若給你一口袋,咱倆馱和的才一樣多。’問驢和騾子各馱幾口袋貨物?”

          這個問題可以用方程組來解:

          設驢馱x口袋,騾子馱y口袋。則驢給騾子一口袋后,驢還剩x-1,騾子成了y+1,這時騾子馱的是驢的二倍,所以有

          2(x-1)=y+1 (1)

          又因為騾子給驢一口袋后,騾子還剩下y-1,驢成了x+1,此時騾子和驢馱的相等,有

          x+1=y-1 (2)

          (1)與(2)聯立,有

          這是一個二元一次議程組。

         。1)-(2)得 x-3=2,

          x=5 (3)

          將(3)代入(2),得y=7。

          答:驢原來馱5口袋,騾子原來馱7口袋。

          《希臘文集》有一道名的題目“愛神的煩惱”。這里有許多神的名字,先介紹一下:愛羅斯是希臘神話中的愛神,吉波莉達是賽浦路斯島的`守護神。9位文藝女神中,葉芙特爾波管簡樂,愛拉托管愛情詩,達利婭管吉劇,特;衾芪璧福览滥裙鼙瘎,克里奧管歷史,波利尼婭管頌歌,烏拉尼婭管天文,卡利奧帕管史詩。

          這道題也是用詩歌形式寫在的:

          愛羅斯在路旁哭泣,

          淚水一滴接一滴。

          吉波莉達向前問道:波利尼

          “是什么事情使你如此傷悲?

          我可能夠幫助你?”

          愛羅斯回答道:

          “九位文藝女神

          不知來自何方

          把我從赫爾康山采回的蘋果,

          幾乎一掃而光,

          葉芙特爾波飛快地搶走十二分之一,

          愛拉托搶得更多——

          七個蘋果中拿走一個。

          八分之一被達利婭搶走,

          比這多一倍的蘋果落入特;衾。

          美利波美娜最是客氣,

          只取走二十分之一。

          可又來了克里奧,

          她的收獲比這多四倍。

          還有三位女神,

          個個都不空手,

          30個歸波利尼婭,

          120個歸烏拉尼婭,

          300個歸卡利奧帕。

          我,可憐的愛羅斯。

          愛羅斯原有多少個蘋果?還剩下50個蘋果。”

          設愛羅斯原來有x個蘋果,則6位文藝女神搶走的蘋果分別是 。

          可列出方程

          答:愛羅斯原來有蘋果3360個。

          選自《中學生數學》20xx年5月下

          20xx高考數學復習三步曲

          編者按:小編為大家收集了“20xx高考數學復習三步曲”,供大家參考,希望對大家有所幫助!

          今年高考文理科的數學試卷總體難度不大,為師生所接受。文科試卷難易程度適中,尤其是填空題和選擇題難度不大,解答題難易程度和試題坡度安排都比較合理,有利于考生的發揮,也有利于指導以后的學習。

          理科試卷容易題、中等題和難題比例恰當,注重邏輯思維能力和表達能力(運用數學符號)以及數形結合能力的考查,部分試題新而不難,開放題有所體現,把能力的考查落到實處。但我個人認為,今年試卷對高中數學的主干知識的核心內容考查不到位,但不等于我們今后可以完全不重視。

          抓基礎:不變應萬變

          把基礎知識和基本技能落到實處。唯有如此才能以不變應萬變。比如,文科第22題是一道經典題型,考查圓錐曲線上一點到定點距離,既考老師又考學生。所謂考老師是說這樣的題型你講過沒有,是怎么講的?學生的典型錯誤(以定點為圓心作一個與橢圓相切的圓,再利用判別式等于0)是怎么糾正?正確解法(轉化為二次函數在某個區間上的最值)是怎么想到的?只有經過這樣的教學環節,學生才能真正理解。所謂考學生是說你自己做錯了,老師重點講評了的經典問題,你掌握了沒有?掌握的標準是能否順利解答相應的變式問題。由于第(3)含有參數,需要分類討論,能有效甄別考生的思維水平和運算能力。本題以橢圓(解析幾何重點內容之一)為載體,考查把幾何問題轉化為代數問題的能力(這是解析幾何的核心思想),以及含參數的二次函數求最值問題(也是代數中的重點和難點),一舉多得。

          當然,可能會有人認為這道題形式不新,其實,要求考題全新既無必要,也不可能,只要有利于高校選拔和中學教學就好,不必過分求新、求異。

          理科的第22題相對較難,不少同學反映不好表述。若能從集合的包含關系這個角度考慮,則容易表述,部分考生是直接對兩個數列進行分類,由于要用到一些多數學生不熟悉的整除知識,因而感到困難,無法下手。這就體現基礎知識和基本技能的重要性。

          盡管今年理科試卷在知識點分布上有些不盡如人意,但復習不能受此影響,仍然要全面、扎實復習,不能留下知識點的死角,相應的技能、技巧要牢固掌握,思想方法都要總結到位,這樣才能“不管風吹浪打,勝似閑庭信步”。

          破難題:提升應對力

          如何應對“題梗阻”?考試中遇到不會做的題目很正常,有些同學會因此影響臨場發揮。考生進考場就像運動員進運動場,心理素質很重要,把心理輔導和答題技巧融于學習之中。在高三復習過程中,不僅要講數學知識,同時還要訓練學生的心理素質和培養學生的答題技巧,這樣才能使學生在考場上應付裕如,出色發揮,考出好成績。

          理科的22題第(2)卡住不少考生,耽誤時間還影響心情,以致第(3)和后面第23題來不及或無心去做,其實,做第(3)題用不到第(2)的結論。而第23題是新編的開放性問題,首先要靜心才能讀懂題目,而讀懂題目至少第(1)、(2)兩題不難。要做到這些并不容易,不是臨考前“先易后難”一句話學生就能做到,需要在平時教學過程中結合具體問題,訓練學生的心理素質,提高其在解題過程中遇到困難時的應變能力,掌握應變策略,才能在考場上“敢于放棄”,從容跳過不會做的題或在解答題中跳步解答,把自己能做的題目先做對,把應得的分得到,這樣考試總是成功的,無論分數高低。

          為何時間與成績不成正比?高三數學就是大量解題,有些重點中學的優秀學生的高考成績甚至不比高二時考分高,豈不是白學?其實,這是誤解。數學講究邏輯,問題從哪里來(已知),到哪里去(求證),中間有哪些溝溝坎坎(思維障礙),怎么克服(怎樣進行等價轉化),不僅是照葫蘆畫瓢的操作性(當然也是必要的)訓練,更重要的是以數學知識為載體,讓學生學會思考問題的方式方法,還要在解題后對問題作歸納總結,找出規律,有時還要把問題作適當推廣,把學生的邏輯思維引到辯證思維。這樣經過一年的高三數學學習,學生收獲的不僅是分數,還有對人終生受用的思維品質的提高。

          重方法:培養好品質

          有些同學做了許多題,就是成績提高不見提高,自己和家長都很納悶。其實學習數學關鍵是要掌握方法,同時還要培養敢于做難題、新題的膽量和毅力。重復性操作的題目做再多,意義也不大。對待難題的態度是培養學生意志品質的好時機,不能輕易錯過(當然也要因人而異)。有些同學往往認為只要弄懂思路,不必解到底。其實,這樣的同學往往眼高手低,會而不對,考試成績忽高忽低,原因在于某些細節處理不當,造成“一失足成千古恨”,事后以粗心搪塞過去。這就需要老師對學生深入了解,結合具體問題給予悉心指導,幫助學生找出真實原因,并制定改正錯誤的辦法,這一過程表面上是幫助學生學會解題,實際上對學生意志品質的培養也就潛移默化地得到了落實。

          我們有理由相信,把解題和人的素質培養有機結合的高三數學教學,不僅能提高學生的解題能力,還能促使他們健康成長,讓我們一起努力!

          以上就是為大家提供的“20xx高考數學復習三步曲”希望能對考生產生幫助,更多資料請咨詢中考頻道。

          生物數學概論

          生物數學是生物學與數學之間的邊緣學科。它以數學方法研究和解決生物學問題,并對與生物學有關的數學方法進行理論研究。

          生物數學的分支學科較多,從生物學的應用去劃分,有數量分類學、數量遺傳學、數量生態學、數量生理學和生物力學等;從研究使用的數學方法劃分,又可分為生物統計學、生物信息論、生物系統論、生物控制論和生物方程等分支。這些分支與前者不同,它們沒有明確的生物學研究對象,只研究那些涉及生物學應用有關的數學方法和理論。

          生物數學具有豐富的數學理論基礎,包括集合論、概率論、統計數學、對策論、微積分、微分方程、線性代數、矩陣論和拓撲學,還包括一些近代數學分支,如信息論、圖論、控制論、系統論和模糊數學等。

          由于生命現象復雜,從生物學中提出的數學問題往往十分復雜,需要進行大量計算工作。因此,計算機是研究和解決生物學問題的重要工具。然而就整個學科的內容而論,生物數學需要解決和研究的本質方面是生物學問題,數學和電腦僅僅是解決問題的工具和手段。因此,生物數學與其他生物邊緣學科一樣通常被歸屬于生物學而不屬于數學。

          生命現象數量化的方法,就是以數量關系描述生命現象。數量化是利用數學工具研究生物學的前提。生物表現性狀的數值表示是數量化的一個方面。生物內在的或外表的,個體的或群體的,器官的或細胞的,直到分子水平的各種表現性狀,依據性狀本身的生物學意義,用適當的數值予以描述。

          數量化的實質就是要建立一個集合函數,以函數值來描述有關集合。傳統的集合概念認為一個元素屬于某集合,非此即彼、界限分明?墒巧锝绱嬖谥罅拷缦薏幻鞔_的模糊現象,而集合概念的明確性不能貼切地描述這些模糊現象,給生命現象的數量化帶來困難。1965年扎德提出模糊集合概念,模糊集合適合于描述生物學中許多模糊現象,為生命現象的數量化提供了新的數學工具。以模糊集合為基礎的模糊數學已廣泛應用于生物數學。

          數學模型是能夠表現和描述真實世界某些現象、特征和狀況的數學系統。數學模型能定量地描述生命物質運動的過程,一個復雜的生物學問題借助數學模型能轉變成一個數學問題,通過對數學模型的邏輯推理、求解和運算,就能夠獲得客觀事物的有關結論,達到對生命現象進行研究的目的。

          比如描述生物種群增長的費爾許爾斯特-珀爾方程,就能夠比較正確的表示種群增長的規律;通過描述捕食與被捕食兩個種群相克關系的洛特卡-沃爾泰拉方程,從理論上說明:農藥的濫用,在毒殺害蟲的同時也殺死了害蟲的天敵,從而常常導致害蟲更猖獗地發生等。

          還有一類更一般的方程類型,稱為反應擴散方程的數學模型在生物學中廣為應用,它與生理學、生態學、群體遺傳學、醫學中的流行病學和藥理學等研究有較密切的關系。60年代,普里戈任提出著名的耗散結構理論,以新的觀點解釋生命現象和生物進化原理,其數學基礎亦與反應擴散方程有關。

          由于那些片面的、孤立的、機械的研究方法不能完全滿足生物學的需要,因此,在非生命科學中發展起來的數學,在被利用到生物學的研究領域時就需要從事物的多方面,在相互聯系的水平上進行全面的研究,需要綜合分析的數學方法。

          多元分析就是為適應生物學等多元復雜問題的需要、在統計學中分化出來的一個分支領域,它是從統計學的角度進行綜合分析的數學方法。多元統計的各種矩陣運算,體現多種生物實體與多個性狀指標的結合,在相互聯系的水平上,綜合統計出生命活動的特點和規律性。

          生物數學中常用的多元分析方法有回歸分析、判別分析、聚類分析、主成分分析和典范分析等。生物學家常常把多種方法結合使用,以期達到更好的綜合分析效果。

          多元分析不僅對生物學的理論研究有意義,而且由于原始數據直接來自生產實踐和科學實驗,有很大的實用價值。在農、林業生產中,對品種鑒別、系統分類、情況預測、生產規劃以及生態條件的分析等,都可應用多元分析方法。醫學方面的應用,多元分析與電腦的結合已經實現對疾病的診斷,幫助醫生分析病情,提出治療方案。

          系統論和控制論是以系統和控制的觀點,進行綜合分析的數學方法。系統論和控制論的方法沒有把那些次要的因素忽略,也沒有孤立地看待每一個特性,而是通過狀態方程把錯綜復雜的關系都結合在一起,在綜合的水平上進行全面分析。對系統的綜合分析也可以就系統的可控性、可觀測性和穩定性作出判斷,更進一步揭示該系統生命活動的特征。

          在系統和控制理論中,綜合分析的特點還表現在把輸出和狀態的變化反饋對系統的影響,即反饋關系也考慮在內。生命活動普遍存在反饋現象,許多生命過程在反饋條件的制約下達到平衡,生命得以維持和延續。對系統的控制常?糠答侁P系來實現。

          生命現象常常以大量、重復的形式出現,又受到多種外界環境和內在因素的隨機干擾。因此概率論和統計學是研究生物學經常使用的方法。生物統計學是生物數學發展最早的一個分支,各種統計分析方法已經成為生物學研究工作和生產實踐的常規手段。

          概率與統計方法的應用還表現在隨機數學模型的研究中。原來數學模型可分為確定模型和隨機模型兩大類如果模型中的變量由模型完全確定,這是確定模型;與之相反,變量出現隨機性變化不能完全確定,稱為隨機模型。又根據模型中時間和狀態變量取值的連續或離散性,有連續模型和離散模型之分。前述幾個微分方程形式的模型都是連續的、確定的數學模型。這種模型不能描述帶有隨機性的生命現象,它的應用受到限制。因此隨機模型成為生物數學不可缺少的部分。

          60年代末,法國數學家托姆從拓撲學提出一種幾何模型,能夠描繪多維不連續現象,他的理論稱為突變理論。生物學中許多處于飛躍的、臨界狀態的不連續現象,都能找到相應的躍變類型給予定性的解釋。躍變論彌補了連續數學方法的不足之處,現在已成功地應用于生理學、生態學、心理學和組織胚胎學。對神經心理學的研究甚至已經指導醫生應用于某些疾病的臨床治療。

          繼托姆之后,躍變論不斷地發展。例如塞曼又提出初級波和二級波的新理論。躍變理論的新發展對生物群落的分布、傳染疾病的蔓延、胚胎的發育等生物學問題賦予新的理解。

          上述各種生物數學方法的應用,對生物學產生重大影響。20世紀50年代以來,生物學突飛猛進地發展,多種學科向生物學滲透,從不同角度展現生命物質運動的矛盾,數學以定量的形式把這些矛盾的實質體現出來。從而能夠使用數學工具進行分析;能夠輸入電腦進行精確的運算;還能把來自名方面的因素聯系在一起,通過綜合分析闡明生命活動的機制。

          總之,數學的介入把生物學的研究從定性的、描述性的水平提高到定量的、精確的、探索規律的高水平。生物數學在農業、林業、醫學,環境科學、社會科學和人口控制等方面的應用,已經成為人類從事生產實踐的手段。

          數學在生物學中的應用,也促使數學向前發展。實際上,系統論、控制論和模糊數學的產生以及統計數學中多元統計的興起都與生物學的應用有關。從生物數學中提出了許多數學問題,萌發出許多數學發展的生長點,正吸引著許多數學家從事研究。它說明,數學的應用從非生命轉向有生命是一次深刻的轉變,在生命科學的推動下,數學將獲得巨大發展。

          當今的生物數學仍處于探索和發展階段,生物數學的許多方法和理論還很不完善,它的應用雖然取得某些成功,但仍是低水平的、粗略的、甚至是勉強的。許多更復雜的生物學問題至今未能找到相應的數學方法進行研究。因此,生物數學還要從生物學的需要和特點,探求新方法、新手段和新的理論體系,還有待發展和完善。

          20xx年高考數學命題預測之立體幾何

          【編者按】近幾年高考立體幾何試題以基礎題和中檔題為主,熱點問題主要有證明點線面的關系,如點共線、線共點、線共面問題;證明空間線面平行、垂直關系;求空間的角和距離;利用空間向量,將空間中的性質及位置關系的判定與向量運算相結合,使幾何問題代數化等等?疾榈闹攸c是點線面的位置關系及空間距離和空間角,突出空間想象能力,側重于空間線面位置關系的定性與定量考查,算中有證。其中選擇、填空題注重幾何符號語言、文字語言、圖形語言三種語言的相互轉化,考查學生對圖形的識別、理解和加工能力;解答題則一般將線面集中于一個幾何體中,即以一個多面體為依托,設置幾個小問,設問形式以證明或計算為主。

          20xx年高考中立體幾何命題有如下特點:

          1.線面位置關系突出平行和垂直,將側重于垂直關系。

          2.多面體中線面關系論證,空間“角”與“距離”的計算常在解答題中綜合出現。

          3.多面體及簡單多面體的概念、性質多在選擇題,填空題出現。

          4.有關三棱柱、四棱柱、三棱錐的問題,特別是與球有關的問題將是高考命題的熱點。

          此類題目分值一般在17---22分之間,題型一般為1個選擇題,1個填空題,1個解答題

        高中數學的學習方法15

          一、課內重視聽講,課后及時復習。

          新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業,勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網絡,納入自己的知識體系。

          二、適當多做題,養成良好的解題習慣。

          要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的'習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。

          三、調整心態,正確對待考試。

          首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我_,要有自己不垮,誰也不能打垮我的自豪感。

          解析幾何:

          這塊剛開始做,也是最后一問永遠不會,就是不敢去做,直接跳過的那種題。后來題目做多了后發現,那些題,無論如何把韋達公式放上去絕對沒錯。就算算不出來擺上去也會有分數的。

          在做難題的時候,要注意方法。其實數學也是有方法可找的。就比如說解析幾何,橢圓這類型的題,是聯立還是點差法,在每次做完題后,根據題目設問的類型要進行反思和整理。

          練習

          高考前做幾套押題卷,來模擬高考是非常有必要的,那么該選擇什么類型的試題呢?總之數學一定要多做練習,整理錯題集。

        【高中數學的學習方】相關文章:

        高中數學的學習計劃03-20

        高中數學的學習方法03-28

        高中數學寒假學習計劃08-28

        高中數學學習計劃03-18

        高中數學的學習方法12-19

        高中數學的學習方法11-15

        高中數學學習方法08-10

        高中數學高效學習方法07-31

        (熱門)高中數學的學習方法05-17

        高中數學學習方法07-05

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>