全等三角形知識點總結
同學們身邊有很多的全等形,全等三角形是最基本,應用最廣泛的一類全等形,下面yjbys小編為大家精心整理的全等三角形知識點總結,方便大家學習!
定義:
能夠完全重合的兩個三角形稱為全等三角形。(注:全等三角形是相似三角形中的特殊情況)
當兩個三角形完全重合時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。
由此,可以得出:全等三角形的對應邊相等,對應角相等。
(1)全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊;
(2)全等三角形對應邊所對的角是對應角,兩條對應邊所夾的角是對應角;
(3)有公共邊的`,公共邊一定是對應邊;
(4)有公共角的,角一定是對應角;
(5)有對頂角的,對頂角一定是對應角;
三角形全等的判定定理及推論
1、三組對應邊分別相等的兩個三角形全等(簡稱SSS或“邊邊邊”),這一條也說明了三角形具有穩定性的原因。
2、有兩邊及其夾角對應相等的兩個三角形全等(SAS或“邊角邊”)。
3、有兩角及其夾邊對應相等的兩個三角形全等(ASA或“角邊角”)。
4、有兩角及其一角的對邊對應相等的兩個三角形全等(AAS或“角角邊”)
5、直角三角形全等條件有:斜邊及一直角邊對應相等的兩個直角三角形全等(HL或“斜邊,直角邊”)
所以,SSS,SAS,ASA,AAS,HL均為判定三角形全等的定理。注意:在全等的判定中,沒有AAA和SSA,這兩種情況都不能唯一確定三角形的形狀。
A是英文角的縮寫(angle),S是英文邊的縮寫(side)。
性質
1、全等三角形的對應角相等、對應邊相等。
2、全等三角形的對應邊上的高對應相等。
3、全等三角形的對應角平分線相等。
4、全等三角形的對應中線相等。
5、全等三角形面積相等。
6、全等三角形周長相等。
(以上可以簡稱:全等三角形的對應元素相等)
7、三邊對應相等的兩個三角形全等。(SSS)
8、兩邊和它們的夾角對應相等的兩個三角形全等。(SAS)
9、兩角和它們的夾邊對應相等的兩個三角形全等。(ASA)
10、兩個角和其中一個角的對邊對應相等的兩個三角形全等。(AAS)
11、斜邊和一條直角邊對應相等的兩個直角三角形全等!(HL)
運用
1、性質中三角形全等是條件,結論是對應角、對應邊相等。 而全等的判定卻剛好相反。
2、利用性質和判定,學會準確地找出兩個全等三角形中的對應邊與對應角是關鍵。在寫兩個三角形全等時,一定把對應的頂點,角、邊的順序寫一致,為找對應邊,角提供方便。
3,當圖中出現兩個以上等邊三角形時,應首先考慮用SAS找全等三角形。
4、用在實際中,一般我們用全等三角形測等距離。以及等角,用于工業和軍事。有一定幫助。
做題技巧
一般來說考試中線段和角相等需要證明全等。
因此我們可以來采取逆思維的方式。
想要證全等,則需要什么條件
另一種則要根據題目中給出的已知條件,求出有關信息。
然后把所得的等式運用(AAS/ASA/SAS/SSS/HL)證明三角形全等。
【全等三角形知識點總結】相關文章:
全等三角形ppt08-30
全等三角形教案08-30
全等三角形的判定08-30
全等三角形證明題08-30
全等三角形練習題08-30
初二數學全等三角形課件08-30
網絡安全等級保護實施方案08-11
色彩知識點總結09-30
外科常用知識點總結10-17
政治會考知識點總結10-30