1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 店鋪租金的確定模型

        時間:2020-08-30 15:11:08 經濟畢業論文 我要投稿

        店鋪租金的確定模型

        店鋪租金的確定模型

        店鋪租金的確定模型

        某商人欲在某火車站附近經營一店鋪,委托本小組對相關情況進行調查。經過數月的資料收集和整理,我們的調查成果如下:
         
         進出車站的乘客為主要服務對象的10家便利店的數據。
         Y是日均銷售額,X1為店鋪面積,X2是店鋪距車站的距離,X3為店員人數,X4為店鋪日租金。
         
         具體數據如下表:
        店鋪代碼 日均銷售額(元)Y 店鋪面積(m2)X1 離車站距離(100m)X2 店員人數(人)X3 店鋪日租金(元)X4
        A
        B
        C
        D
        E
        F
        G
        H
        I
        J 4000
        4500
        8000
        6000
        5000
        2000
        1500
        9000
        3000
        7000 60
        100
        85
        50
        75
        55
        70
        95
        45
        65 3
        5
        2
        1
        3
        4
        6
        1
        3
        2 5
        7
        5
        3
        5
        4
        5
        6
        4
        4 600
        600
        1020
        750
        750
        440
        280
        1425
        450
        780
         數據來源:
         
         為了考察店鋪面積、離車站距離、店員人數和日租金對日銷售額的影響,我們首先做Y關于X1、X2、X3、X4的回歸,即建立如下回歸模型:
        Y=C+β1 X1+β2 X2+β3 X3+β4 X4
        得回歸結果如下表:
         
         
        Dependent Variable: Y
        Method: Least Squares
        Date: 12/14/03   Time: 17:51
        Sample: 1 10
        Included observations: 10
        Variable Coefficient Std. Error t-Statistic Prob. 
        C 4815.267 1536.418 3.134087 0.0258
        X1 128.1930 39.79796 3.221096 0.0234
        X2 -1494.966 513.4078 -2.911848 0.0333
        X3 -619.1674 472.6664 -1.309946 0.2472
        X4 -1.877208 2.938471 -0.638838 0.5510
        R-squared 0.970270     Mean dependent var 5000.000
        Adjusted R-squared 0.946486     S.D. dependent var 2505.549
        S.E. of regression 579.6124     Akaike info criterion 15.86945
        Sum squared resid 1679752.     Schwarz criterion 16.02074
        Log likelihood -74.34724     F-statistic 40.79489
        Durbin-Watson stat 1.407218     Prob(F-statistic) 0.000522

         從回歸結果來看, R2接近于1,整個方程的擬合優度很高,F>F0.05(4,5)=5.19,變量X3、X4對應的偏回歸系數之t值小于2,而且X3、X4的符號與經濟意義相悖,該模型明顯存在多重共線性,回歸結果不顯著,回歸方程不能投入使用。
         
         由于變量較多,采用逐步回歸法來修正模型。
         用Y對各個變量單獨進行回歸:
         
         對X1,有:
         
        Dependent Variable: Y
        Method: Least Squares
        Date: 12/14/03   Time: 20:17
        Sample: 1 10
        Included observations: 10
        Variable Coefficient Std. Error t-Statistic Prob. 
        C 444.4444 2988.555 0.148716 0.8855
        X1 65.07937 41.38415 1.572567 0.1545
        R-squared 0.236129     Mean dependent var 5000.000
        Adjusted R-squared 0.140645     S.D. dependent var 2505.549
        S.E. of regression 2322.680     Akaike info criterion 18.51569
        Sum squared resid 43158730     Schwarz criterion 18.57620
        Log likelihood -90.57844     F-statistic 2.472968
        Durbin-Watson stat 1.988381     Prob(F-statistic) 0.154464
         
         對X2,有:

        Dependent Variable: Y
        Method: Least Squares
        Date: 12/14/03   Time: 20:20
        Sample: 1 10
        Included observations: 10
        Variable Coefficient Std. Error t-Statistic Prob. 
        C 8687.500 1096.232 7.924871 0.0000
        X2 -1229.167 324.6760 -3.785826 0.0053
        R-squared 0.641777     Mean dependent var 5000.000
        Adjusted R-squared 0.596999     S.D. dependent var 2505.549
        S.E. of regression 1590.581     Akaike info criterion 17.75844
        Sum squared resid 20239583     Schwarz criterion 17.81896
        Log likelihood -86.79221     F-statistic 14.33248
        Durbin-Watson stat 2.488527     Prob(F-statistic) 0.005344


         對X3,有:
         
        Dependent Variable: Y
        Method: Least Squares
        Date: 12/14/03   Time: 20:28
        Sample: 1 10
        Included observations: 10
        Variable Coefficient Std. Error t-Statistic Prob. 
        C 3344.828 3791.325 0.882232 0.4034
        X3 344.8276 770.6964 0.447423 0.6664
        R-squared 0.024413     Mean dependent var 5000.000
        Adjusted R-squared -0.097536     S.D. dependent var 2505.549
        S.E. of regression 2624.897     Akaike info criterion 18.76033
        Sum squared resid 55120690     Schwarz criterion 18.82084
        Log likelihood -91.80164     F-statistic 0.200188
        Durbin-Watson stat 2.273575     Prob(F-statistic) 0.666436


         對X4,有:
         
        Dependent Variable: Y
        Method: Least Squares
        Date: 12/14/03   Time: 20:30
        Sample: 1 10
        Included observations: 10
        Variable Coefficient Std. Error t-Statistic Prob. 
        C -124.4556 691.7552 -0.179913 0.8617
        X4 7.222630 0.893132 8.086854 0.0000
        R-squared 0.891004     Mean dependent var 5000.000
        Adjusted R-squared 0.877380     S.D. dependent var 2505.549
        S.E. of regression 877.3734     Akaike info criterion 16.56860
        Sum squared resid 6158272.     Schwarz criterion 16.62912
        Log likelihood -80.84299     F-statistic 65.39721
        Durbin-Watson stat 1.099477     Prob(F-statistic) 0.000040
         
         從上面的回歸結果可以看到,Y對X2的`回歸擬合最好,故選擇該回歸式為基本回歸表達式,F在分別加入X1、X3、X4回歸結果如下:
         
         加入X1,有:
         
         
        Dependent Variable: Y
        Method: Least Squares
        Date: 12/14/03   Time: 21:21
        Sample: 1 10
        Included observations: 10
        Variable Coefficient Std. Error t-Statistic Prob. 
        C 3641.214 817.1938 4.455753 0.0030
        X1 75.45849 10.58869 7.126326 0.0002
        X2 -1307.769 121.3087 -10.78050 0.0000
        R-squared 0.956605     Mean dependent var 5000.000
        Adjusted R-squared 0.944206     S.D. dependent var 2505.549
        S.E. of regression 591.8273     Akaike info criterion 15.84763
        Sum squared resid 2451817.     Schwarz criterion 15.93841
        Log likelihood -76.23816     F-statistic 77.15446
        Durbin-Watson stat 1.809788     Prob(F-statistic) 0.000017
         
         可見,加入X1效果較好,這樣回歸式中就有X1、X2兩個變量了。在此基礎上繼續加入其他變量。
         
         加入X3,有:
         
        Dependent Variable: Y
        Method: Least Squares
        Date: 12/14/03   Time: 21:26
        Sample: 1 10
        Included observations: 10
        Variable Coefficient Std. Error t-Statistic Prob. 
        C 3993.580 797.8410 5.005484 0.0024
        X1 109.3747 25.40691 4.304920 0.0051
        X2 -1181.338 142.6370 -8.282130 0.0002
        X3 -647.0407 446.8316 -1.448064 0.1978
        R-squared 0.967843     Mean dependent var 5000.000
        Adjusted R-squared 0.951765     S.D. dependent var 2505.549
        S.E. of regression 550.2815     Akaike info criterion 15.74791
        Sum squared resid 1816859.     Schwarz criterion 15.86895
        Log likelihood -74.73956     F-statistic 60.19526
        Durbin-Watson stat 1.281362     Prob(F-statistic) 0.000072
         
         可以看出,加入了X3以后引起了多重共線性,故剔除。
         
         現在加入X4,回歸結果如下:
         
        Dependent Variable: Y
        Method: Least Squares
        Date: 12/14/03   Time: 21:29
        Sample: 1 10
        Included observations: 10
        Variable Coefficient Std. Error t-Statistic Prob. 
        C 4636.482 1619.077 2.863658 0.0287
        X1 99.57632 35.19507 2.829269 0.0300
        X2 -1674.283 523.5131 -3.198167 0.0186
        X4 -2.232526 3.095576 -0.721199 0.4979
        R-squared 0.960067     Mean dependent var 5000.000
        Adjusted R-squared 0.940100     S.D. dependent var 2505.549
        S.E. of regression 613.2195     Akaike info criterion 15.96450
        Sum squared resid 2256229.     Schwarz criterion 16.08553
        Log likelihood -75.82249     F-statistic 48.08356
        Durbin-Watson stat 1.907328     Prob(F-statistic) 0.000137
         
         同樣,X4引起多重共線性,故剔除。
         
         故Y對X1、X2的回歸擬合最好,回歸表達式應為:
         
        Y=3641.214+75.45849X1-1307.769X2
         
         其經濟意義為,在其他條件不變時,店鋪面積擴大1平方米,日均銷售額大約會增加75.5元;店鋪如果比現在地址再遠離車站100米,日均銷售額大約會減少1307.8元。

         由于客戶的資金有限,每天能負擔的租金為700~800元,因此我們建議在離火車站100米處租賃面積為60平方米左右的店鋪,租金大約為750元。這樣客戶能夠獲得既定條件下的最大收益。
         
         以上就是我們的分析報告。

        【店鋪租金的確定模型】相關文章:

        1.公租房租金標準如何確定文摘

        2.店鋪裝修

        3.佛山創業租金補貼辦理指南

        4.經濟模型論文

        5.Linux安全模型

        6.融資租賃合同中租金組成的法律分析

        7.北京租房租金補貼申請條件

        8.淘寶店鋪的裝修技巧

        9.無店鋪經營的心得

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>