- 相關推薦
光纖光纜和通信電纜技術發展與思考
摘 要 綜述了近期光纖光纜和通信電纜在制造、施工及維護技術上的發展特點,分析了其發展趨勢,并就我國光纖光纜及通信電纜技術與產業的發展提出了一些值得思考的問題。關鍵詞 光纖光纜 通信電纜 ITU-T建議 技術發展
1 光纖技術發展的特點
1.1 網絡的發展對光纖提出新的要求
下一代網絡(NGN)引發了許多的觀點和爭論。有的專家預言,不管下一代網絡如何發展,一定將要達到三個世界,即服務層面上的IP世界、傳送層面上的光的世界和接入層面上的無線世界。下一代傳送網要求更高的速率、更大的容量,這非光纖網莫屬,但高速骨干傳輸的發展也對光纖提出了新的要求。
(1)擴大單一波長的傳輸容量
目前,單一波長的傳輸容量已達到40 Gbit/s,并已開始進行160 Gbit/s的研究。40Gbit/s以上傳輸對光纖的PMD將提出一定的要求,2002年的ITU-T SG15會議上,美國已提出對40Gbit/s系統引入一個新的光纖類別(G.655.C)的提議,并建議對其PMD傳輸中的一些問題進行深入探討,也許不久的將來就會出現一種專門的40Gbit/s光纖類型。
(2)實現超長距離傳輸
無中繼傳輸是骨干傳輸網的理想,目前有的公司已能夠采用色散齊理技術,實現2000~5000km的無電中繼傳輸。有的公司正進一步改善光纖指標,采用拉曼光放大技術,可以更大地延長光傳輸的距離。
(3)適應DWDM技術的運用
目前32×2.5Gbit/s DWDM系統已經運用,64×2.5Gbit/s及32×10Gbit/s系統已在開發并取得很好的進展。DWDM系統的大量使用,對光纖的非線性指標提出了更高的要求。ITU-T對光纖的非線性屬性及測試方法的標準(G.650.2)最近也已完成,當光纖的非線性測試指標明確之后,對光纖的有效面積將會提出相應指標,特別是對G.655光纖的非線性特性會有進一步改善的要求。
1.2 光纖標準的細分促進了光纖的準確應用
2000年世界電信標準大會批準將原G.652光纖重新分為G.652.A、G.652.8和G.652.C 3類光纖;將G.655光纖重新分為G.655.A和G.655.B兩類光纖。這種光纖標準的細分促進了光纖的準確使用,細化標準的同時也提高了一些光纖的指標要求(如有些光纖幾何參數的容差變。鞔_了對不同的網絡層次和不同的傳輸系統中使用的光纖的不同指標要求(如PMD值的規定),并提出了一些新的指標概念(如“色散縱向均勻性”等),對合理使用光纖取得了很好的作用。所有這些建議的修改、子建議的出現及新子建議的起草,都意味著光纖分類及指標、測試方法有某些改進,或有重要的提升;都標志著要求光纖質量的提高或運用方向上的調整,是值得注意的光纖技術新動向。
1.3 新型光纖在不斷出現
為了適應市場的需要,光纖的技術指標在不斷改進,各種新型光纖在不斷涌現,同時各大公司正加緊開發新品種。
(1)用于長途通信的新型大容量長距離光纖
主要是一些大有效面積、低色散維護的新型G.655光纖,其PMD值極低,可以使現有傳輸系統的容量方便地升級至10~40Gbit/s,并便于在光纖上采用分布式拉曼效應放大,使光信號的傳輸距離大大延長。如康寧公司推出的Pure Mode PM系列新型光纖利用了偏振傳輸和復合包層,用于10 Gbit/s以上的DWDM系統中,據稱很適合于拉曼放大器的開發與應用。Alcatel cable推出的Teralight Ultra光纖,據介紹已有傳輸100km長度以上單信道40Gbit/s、總容量10.2 Tbit/s的記錄。還有一些公司開發負色散大有效面積的光纖,提高了非線性指標的要求,并簡化了色散補償的方案,在長距離無再生的傳輸中表現出很好的性能,在海底光纜的長距離通信中效果也很好。
(2)用于城域網通信的新型低水峰光纖
城域網設計中需要考慮簡化設備和降低成本,還需要考慮非波分復用技術(CWDM)應用的可能性。低水峰光纖在1360~1460nm的延伸波段使帶寬被大大擴展,使CWDM系統被極大地優化,增大了傳輸信道、增長了傳輸距離。一些城域網的設計可能不僅要求光纖的水峰低,還要求光纖具有負色散值,一方面可以抵消光源光器件的正色散,另一方面可以組合運用這種負色散光纖與G.652光纖或G.655標準光纖,利用它來做色散補償,從而避免復雜的色散補償設計,節約成本。如果將來在城域網光纖中采用拉曼放大技術,這種網絡也將具有明顯的優勢。但是畢竟城域網的規范還不是很成熟,所以城域網光纖的規格將會隨著城域網模式的變化而不斷變化。
(3)用于局域網的新型多模光纖
由于局域網和用戶駐地網的高速發展,大量的綜合布線系統也采用了多模光纖來代替數字電纜,因此多模光纖的市場份額會逐漸加大。之所以選用多模光纖,是因為局域網傳輸距離較短,雖然多模光纖比單模光纖價格貴50%~100%,但是它所配套的光器件可選用發光二極管,價格則比激光管便宜很多,而且多模光纖有較大的芯徑與數值孔徑,容易連接與耦合,相應的連接器、耦合器等元器件價格也低得多。ITU-T至今未接受62.5/125μm型多模光纖標準,但由于局域網發展的需要,它仍然得到了廣泛使用。而ITU-T推薦的G.651光纖,即50/125μm的標準型多模光纖,其芯徑較小、耦合與連接相應困難一些,雖然在部分歐洲國家和日本有一些應用,但在北美及歐洲大多數國家很少采用。針對這些問題,目前有的公司已進行了改進,研制出新型的5O/125μm光纖漸變型(G1)光纖,區別于傳統的50/125μm光纖纖芯的梯度折射率分布,它將帶寬的正態分布進行了調整,以配合850nm和1300nm兩個窗口的運用,這種改進可能會為50/125pm光纖在局域網運用找到新的市場。
(4)前途未卜的空芯光纖
據報道,美國一些公司及大學研究所正在開發一種新的空芯光纖,即光是在光纖的空氣夠傳輸。從理論上講,這種光纖沒有纖芯,減小了衰耗,增長了通信距離,防止了色散導致的干擾現象,可以支持更多的波段,并且它允許較強的光功率注入,預計其通信能力可達到目前光纖的100倍。歐洲和日本的一些業界人士也十分關注這一技術的發展,越來越多的研究證明空芯光纖似有可能。如果真能實用,就能解決現有光纖系統長距離傳輸的問題,并大大降低光通信的成本。但是,這種光纖使用起來還會遇到許多棘手的問題,比如光纖的穩定性、側壓性能及彎曲損耗的增大等。因此,對于這種光纖的現場使用還需做進一步的探討。
2 光纜技術的發展特點
2.1 光網絡的發展使得光纜的新結構不斷涌現
光纜的結構總是隨著光網絡的發展、使用環境的要求而發展的。新一代的全光網絡要求光纜提供更寬的帶寬、容納更多的波長、傳送更高的速率、便于安裝維護、使用壽命更長等。近年來,光纜結構的發展可歸納為以下一些特點。
【光纖光纜和通信電纜技術發展與思考】相關文章:
光纖通信工程技術研究探討05-03
光纖通信的農網用電信息綜述論文06-23
EPON下的配網通信技術思考06-10
珠算的文化透視和科學思考論文05-16
光纖CAN總線自愈環網的研究06-01
納米復合材料技術發展及前景03-10
汽車電子技術發展趨勢論文04-19
淺談電子技術發展論文(精選10篇)05-18