1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 小學數學《解簡易方程》教學反思

        時間:2024-07-29 17:41:04 小學教學反思 我要投稿
        • 相關推薦

        小學數學《解簡易方程》教學反思

          作為一名到崗不久的老師,我們要在課堂教學中快速成長,借助教學反思我們可以拓展自己的教學方式,那么什么樣的教學反思才是好的呢?以下是小編為大家整理的小學數學《解簡易方程》教學反思,歡迎閱讀與收藏。

        小學數學《解簡易方程》教學反思

        小學數學《解簡易方程》教學反思1

          新課程的改革,使得小學的知識要體現與初中更加的接軌,五年級上冊第四單元“解簡易方程”中進行了一次新的改革。能過本次活動我課下反思如下:

          1、在本課開始出示天平,提出“怎樣才能使得天平左邊只剩下X,而保持天平平衡”這一問題,引導學生由天平保持平衡的變化規律,推出 議程兩過保持相等的變換方法,這樣的過程做到了“寓知識于游戲,化抽象為形象,變空沒為具體”,使學生的學習具有形象性、趣味性。

          2、如果我在課前準備一些“小蛋珠”來代替演示砝碼,學生會更直觀的明白方程保持不變與等式一樣的規律了。

          要求方程的解法要根據天平的原理來進行解答,也就是說要通過等式的性質來解方程,這一方法雖然說讓方程的解法找到了本質的東西,但是也讓我感到了許多困惑:

          1、從教材的編排上,整體難度下降,有意避開了,形如:45-X=23等類型的`題目。把用等式解決的方法單一化了。在實際教學中我們要求學生較熟練地利用等式的方法來解方程,但用這樣的方法來解方程之后,書本不再出現X前面是減號或除號的方程題了,學生在列方程解實際應用時,我們并不能刻意地強調學生不會列出X在后面的方程,我們更頭痛于學生的實際解答能力。在實際的方程應用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對于好的學生來說,我們會讓他們嘗試接受--解答X在后面這類方程的解答方法,就是等號二邊同時加上X,再左右換位置,再二邊減一個數,真有點麻煩了。而且有的學生還很難掌握這樣方法。

          2、 內容看似少實際教得多。難度下降后,看起來教師要教的內容變得少了,可以實際上反而是多了。教師要給他們補充X前面是除號或減號的方程的解法。要教他們列方程時怎么避免X前面是除號或減號的方程的出現等等。

        小學數學《解簡易方程》教學反思2

        《解簡易方程》教學反思數學課程標準(實驗稿)》改變了小學階段解方程方法的教學要求,采用了等式的性質來教學解方程,F將解方程的新舊方法舉例如下:

          老方法:

          x + 4 = 20

          x = 20-4

          依據運算之間的關系:一個加數等于和減另一個加數。

          新方法:

          x + 4 = 20

          x + 4-4=20-4

          依據等式的基本性質1:等式兩邊加上或減去相等的數,等式不變。

          改革的原因(摘自教學參考書):

          新教材編寫者如此說明:長期以來,小學教學簡易方程時,方程變形的依據總是加減運算的關系或乘除運算之間的關系,這實際上是用算術的思路求未知數。到了中學又要另起爐灶,引入等式的基本性質或方程的同解原理來教學解方程。小學的思路及其算法掌握得越牢固,對中學代數起步教學的負遷移就越明顯。因此,現在根據《標準》的要求,從小學起就引入等式的基本性質,并以此為基礎導出解方程的方法。這就較為徹底地避免了同一內容兩種思路、兩種算理解釋的現象,有利于加強中小學數學教學的銜接。

          從這我們不難看出,為了和中學教學解方程的方法保持一致,是此次改革的主要原因。

          那么,小學生學這樣的方法,實際操作中會出現什么樣的情況?這樣的'改革有沒有什么問題? 在我的教學過程中真的出現了問題 。

          1.無法解如a-x=b和ax=b此類的方程

          新教材認為,利用等式基本性質解方程后,解象x+a=b與x-a=b一類的方程,都可以歸結為等式兩邊同時減去(加上)a;解如ax=b與xa=b一類的方程,都可以歸結為等式兩邊同時除以(乘上)a。這就是所謂相比原來方法,思路更為統一的優越性。然而,它有一個相應的調整措施值得我們注意,那就是它把形如a-x=b和ax=b的方程回避掉了。原因是小學生還沒有學習正負數的四則運算,利用等式的基本性質解a-x=b,方程變形的過程及算理解釋比較麻煩;而ax=b的方程,因為其本質是分式方程,依據等式的基本性質解需要先去分母,也不適合在小學階段學習。

          我認為為了要運用等式基本性質,卻回避掉了兩類方程,這似乎不妥。更重要的是,回避這兩類方程,新教材認為并不影響學生列方程解決實際問題。因為當需要列出形如a-x=b或ax=b的方程時,總是要求學生根據實際問題的數量關系,列成形如x+b=a或bx=a的方程。但我認為,這樣的處理方法,有時更會無法避免地直接和方程思想發生矛盾。

          如3千克梨比5千克桃子貴0.5元。梨每千克2.5元,桃子每千克多少元?

          合理的做法應是設桃子每千克X元,從順向思考,列出方程為2.53-5X=0.5。然而,按新教材的編排,因為學生現在不會解這樣的方程,所以要根據數量關系,轉列成5X+0.5=2.53之類的方程。又如:課本第62頁中的爸爸比小明大28歲,小明Х歲,爸爸40歲。很多學生根據爸爸比小明大28歲列出40-Х=28,可是無法求解,所以又轉成Х+28=40。

          很明顯,第二個方程是和方程思想的基本理念相違背的。我們知道,方程最大的意義,就是讓未知數參與進式子,使考慮問題更加直接自然。為實現這個目標,很重要的一點,就是列式時應盡量順向思考,以降低思考的難度。這是體現方程方法的優越性必然要求。事實上,如果學生能夠列成5X+0.5=2.53 Х+28=40那就說明他已經非常熟悉其中的數量關系了,此時,用算術方法即可,哪還有列方程來解的必要呢?我們又怎談引導學生認識方程的優越性呢?

          我們不難看出,根據現實情境列方程解決問題,X當作減數、當作除數,應當是很常見、很必要的現象。要學生學會解這些方程,是正常的教學要求,這是不應該回避的,否則,我們的教學就會顯得片面和狹隘。

          2.解方程的書寫過程太繁瑣

          教材要求,在學生用等式基本性質解方程時,方程的變形過程應該要寫出來,等到熟練以后,再逐步省略。這樣的要求,在實際操作中,帶來了書寫上的繁瑣。

          因為用等式基本性質解方程,每兩步才能完成一次方程的變形。這相對于簡單的方程,尚沒什么,但對一些稍復雜的方程,其解的過程就顯得太繁瑣了

          從這兩個方面來看,小學里學習等式的基本性質,并運用它來解方程,在實際操作中,也存在許多的現實問題。那么,如果說用算術思路解方程對初中學習有負遷移,需要改革,現在改成用等式基本性質解方程,同樣出現問題,那我們又如何是好呢?

        小學數學《解簡易方程》教學反思3

          人教版五年級上冊《解簡易方程》這個單元中,教材是通過等式的基本性質來解方程,這個方法雖然說使得小學的知識與初中的知識更加的接軌,讓方程的解法更加的簡單。從教材的編排上,整體難度下降,對學生以后的發展是有利的。但是教材中故意避開了減數和除數為未知數的方程,如:a-x=b或a÷x=b,要求學生根據實際問題的數量關系,列成如x+b=a或bx=a的方程。這樣的處理方法,有時也會無法避免地直接和方程思想發生矛盾。例如“爸爸比小明大28歲,小明Х歲,爸爸40歲!焙芏鄬W生列出了這樣的方程:40-Х=28,方程列的是沒有任何問題的,但是應該怎么解呢?允不允許學生用四則運算各部分的關系來解方程?是否該向學生講解方法?還是讓學生把此方程改成教材要求的那樣的方程?如果要改成教材要求的方程,那就是在向學生傳達這樣的思想:這樣的列法是不被認可的,那么以后在學習“未知數是減數和除數的方程”時,學生的思維不就又和現在沖突了嗎?現在學習的節方程中,學生很容易看見加法就減,看見減法就加,看見乘法就除,看見除法就乘,如把30÷Ⅹ=15的解法教給學生,能熟練掌握并運用的學生很少,對大部分學生來說越教越是糊涂,把本來剛建構的解方程方法打破了。如果不安排,那么每次在出現的時故意回避嗎?

          在教學列方程解加減乘除解決問題第一課時,我是這樣處理的。先出示做一做的題目,這題更接近學生的實際,學生也能更好理解數量關系。小明今年身高152厘米,比去年長高了8厘米。小明去年身高多少?先讓學生讀題理解題目中有哪幾個量?引導學生進行概括,去年的身高、今年的身高、相差數。追問:這三個量之間有怎樣的相等關系呢?

          去年的身高+長高的8cm=今年的身高

          今年的身高-去年的身高=長高的8cm

          今年的身高-長高的8cm=去年的身高

          你能根據這三個數量關系列出方程嗎?學生嘗試列方程。幾乎全班學生都是正確的。

          X+8=152 152-x=8 152-8=x

          追問學生你對哪個方程有想法?學生一致認為對第三個方程有想法?生1:這個根本沒有必要寫x,因為直接可以計算了。生2:x不寫,就是一個算式,直接可以算了。我肯定到:列算式解決實際問題時,未知數始終作為一個“解決的`目標”不參加列式運算,只能用已知數和運算符號組成算式,所以這樣的x就沒有必要。接著讓學生解這兩個方程X+8=152 、152-x=8方程 。學生發現152-x=8解出來的解是不正確的。告訴學生減數為未知數的方程我們小學階段不作要求,所以你們就無法解答了。接著,我再引導學生觀察這三個數量關系,他們之間有聯系嗎?其實減法是加法的逆運算,是有加法轉變過來。因此,我們在思考數量關系時,只要思考加法的數量關系,這是順向思維,解題思路更加直截了當,降低了思考的難度。接著只要把未知數以一個字母(如x)為代表和已知數一起參加列式運算x+b=a,體會列方程解決問題的優越性。這就是我們今天學習的一種新的解決問題的方法——列方程解決問題。

          接著用同樣的教學方法探究 bx=a的解決問題。

          我這樣的教學不知道是否合理?其實小學生在學習加減法、乘除法時,早就對四則運算之間的關系有所感知,并積累了比較豐富的感性經驗。要不要運用等式的性質對學生再加以概括呢?

        【小學數學《解簡易方程》教學反思】相關文章:

        五年級數學《解簡易方程》教學反思(精選11篇)05-22

        小學數學《方程》教學反思04-08

        小學數學《解方程》教學反思11-20

        小學數學解方程教學反思02-05

        小學數學解方程教學反思5篇02-05

        小學數學解方程教學反思(5篇)02-05

        小學數學《解方程》教學反思4篇11-20

        小學數學列方程解應用題說課稿04-04

        小學列方程解應用題04-03

        小學數學教學教學反思11-10

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>