數學簡介
定義
數學是研究現實世界空間形式和數量關系的一門科學。分為初等數學和高等數學。它在科學發展和現代生活生產中的應用非常廣泛,是學習和研究現代科學技術必不可少的基本工具。
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics/Math),源自于古希臘語的μθημα(máthēma),其有學習、學問、科學之意,以及另外還有個較狹隘且技術性的意義——“數學研究”。即使在其語源內,其形容詞意義和與學習有關的,亦會被用來指數學的。其在英語的復數形式,及在法語中的復數形式+es成mathématiques,可溯至拉丁文的中性復數(Mathematica),由西塞羅譯自希臘文復數 τα μαθηματικά(ta mathēmatiká)。在中國古代把數學叫算術,又稱算學,最后才改為數學。數學分為兩部分,一部分是幾何,另一部分是代數。[1]
數學是利用符號語言研究數量、結構、變化以及空間模型等概念的一門學科。數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的邏輯推理及對完美境界的追求。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。
對象
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展,直至16世紀的文藝復興時期,因著和新科學發現相作用而生成的數學革新導致了知識的加速,至今。
數學被使用在世界不同的領域上,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,并導致全新學科的發展。數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標。雖然許多以純數學開始的研究,但之后會發現許多應用。
創立于二十世紀三十年代的法國的布爾巴基學派認為:數學,至少純數學,是研究抽象結構的理論。結構,就是以初始概念和公理出發的演繹系統。布學派認為,有三種基本的抽象結構:代數結構(群,環,域,格……)、序結構(偏序,全序……)、拓撲結構(鄰域,極限,連通性,維數……)。[2]
領域
數學商業上計算的需要、了解數與數之間的體系、測量土地面積及預測天文觀念。這四種需要大致地與數量、結構、空間及變化(即算術、代數、幾何及分析)等數學上廣泛的領域相關連著。除了上述主要的關注之外,亦有用來探索由數學核心至其他領域上之間的連結的子領域:至邏輯、至集合論(基礎)、至不同科學的經驗上的數學(應用數學)、及較近代的至不確定性的嚴格學習。
短語
[span]數學Mathematics;Maths;TEACMSES
[span]數學分析 [數] Mathematical Analysis;analysis;Math analysis; [數] Matematisk analyse
[span]數學規劃 [數] mathematical programming; [數] Mathematical Planning;mp; [數] mathematical Slave ogramming