同一天過生日的概率
假設你在參加一個由50人組成的婚禮,有人或許會問:“我想知道這里兩個人的生日一樣的概率是多少?此處的一樣指的是同一天生日,如5月5日,并非指出生時間完全相同。”
也許大部分人都認為這個概率非常小,他們可能會設法進行計算,猜想這個概率可能是七分之一。然而正確答案是,大約有兩名生日是同一天的客人參加這個婚禮。如果這群人的生日均勻地分布在日歷的任何時候,兩個人擁有相同生日的概率是97%。換句話說就是,你必須參加30場這種規模的聚會,才能發現一場沒有賓客出生日期相同的聚會。
人們對此感到吃驚的原因之一是,他們對兩個特定的人擁有相同的出生時間和任意兩個人擁有相同生日的概率問題感到困惑不解。兩個特定的人擁有相同出生時間的概率是三百六十五分之一。回答這個問題的關鍵是該群體的大小。隨著人數增加,兩個人擁有相同生日的概率會更高。因此在10人一組的團隊中,兩個人擁有相同生日的概率大約是12%。在50人的聚會中,這個概率大約是97%。然而,只有人數升至366人(其中有一人可能在2月29日出生)時,你才能確定這個群體中一定有兩個人的生日是同一天。
多少只襪子才能配成一對?
關于多少只襪子能配成對的問題,答案并非兩只。而且這種情況并非只在我家發生。為什么會這樣呢?那是因為我敢擔保在冬季黑蒙蒙的早上,如果我從裝著黑色和藍色襪子的抽屜里拿出兩只,它們或許始終都無法配成一對。雖然我不是太幸運,但是如果我從抽屜里拿出3只襪子,我敢說肯定會有一雙顏色是一樣的。不管成對的那雙襪子是黑色還是藍色,最終都會有一雙顏色一樣的。如此說來,只要借助一只額外的襪子,數學規則就能戰勝墨菲法則。通過上述情況可以得出,“多少只襪子能配成一對”的答案是3只。
當然只有當襪子是兩種顏色時,這種情況才成立。如果抽屜里有3種顏色的襪子,例如藍色、黑色和白色襪子,你要想拿出一雙顏色一樣的,至少必須取出4只襪子。如果抽屜里有10種不同顏色的襪子,你就必須拿出11只。根據上述情況總結出來的數學規則是:如果你有N種類型的襪子,你必須取出N+1只,才能確保有一雙完全一樣的。